About the company

Startup or self-employed

Members type

6999 Astano, Switzerland

Company size

Mark Breiter



  • Clean water and sanitation

  • Affordable and clean energy

  • Industry, innovation and infrastructure

  • Sustainable cities and communities

  • Responsible consumption and production



Alliance member


We develop and promote innovative solutions and technologies to recycle carbon from the atmosphere, where we have an excess, to agricultural soils, where we have too little.

The specific solutions we've developed include an innovative, efficient continuous pyrolysis device to produce biochar and/or torrefied biomass at scale, and a novel method to produce humic and fulvic acid from torrefied biomass at significantly less cost than current methods.

Labelled solution

Horizontal bed pyrolysis kiln

The pyrolysis kiln by CarbonZero decomposes carbon to various forms of biochar, humic and fulvic acid with an efficient, affordable and reliable technology.
Solution Label August 2019 Solution

Biohumates production process

Offer Biohumates production process

A novel, patentable process to produce pure humic and fulvic acid from biomass.

Humic and fulvic acid are the end products of biomass decomposition in soils. Comprised of long chains of primarily carbon, hydrogen and oxygen, infinite in variety, they have the potential to significantly improve soil fertility. A garden soil that has had annual additions of plentiful amounts of compost over decades will be rich in humic and fulvic acid, and very fertile. However, almost all of the carbon in the original biomass used for compost will have oxidized to CO2, perhaps only 1% to 2% becomes relatively stable humic matter. Hence, this method of building humic content in large scale agriculture is in almost all cases too inefficient to be practical. Nature can afford to be inefficient, taking thousands of years to build humic matter in soils. But when humans dominate, stripping the land of vegetation, ploughing, spraying chemicals, humic matter in soils is decimated. The loss of humic matter (i.e. carbon) in soils is as urgent a sustainability issue as any other we face. Without humic matter, soils become completely infertile, and large scale agriculture as we know it today cannot continue. There currently exists a market valued at about 700 million dollars annual for humates, which are produced from mined brown coal deposits near the surface of the soil. Humates are a combination of humic / fulvic acid, minerals, heavy metals, and often radioactive elements like uranium. The mineral content varies in composition, not only per mine, but also to some extent per shovel. Some producers try to source the mined material to be relatively free of contaminants that are detrimental to agricultural soils. Many, from China for instance, simply dig up whatever they can find and put it on the market. Almost none of the humate producers will provide a certificate of analysis of their product. They will simply say "it is pure, of high quality", but unless a buyer has every lot analyzed, taking multiple samples, they will have no idea what contaminates are actually in it. In short, there are no standards in this market, very little transparency, and it is still large. We call these products fossil humates. Our novel process produces humic and fulvic acid directly from biomass in a matter of hours. All of the carbon in the biomass is preserved, rather than losing almost all to CO2. We call these end products biohumates. These molecules are not bound to any minerals as produced, so they can be blended with exact ratios of minerals that would be best for a particular soil before application. Or they can be left unbound to for instance chelate heavy metals in soil. Fulvic acid also has significant promise as a nutraceutical, particularly because when it is properly formulated, it facilitates redox signalling within and between cells. Redox signalling is essential to proper cellular functionality. Healthy cells will have optimal redox signalling potential, and even cancerous cells can be restored to a healthy state if redox signalling is restored. Interestingly, bacterial colonies, whether within our intestines or in soil, utilize redox signalling, which can be significantly improved by humic and fulvic acid. What the current market completely lacks is a pure source of humic and fulvic acid, and our process can offer that at a fraction of the current production cost. The process is currently demonstrated at lab scale and we are moving toward setting up a pilot production plant in the coming months.

Available in

Categories of application
Affordable and clean energy, Industry, innovation and infrastructure, Responsible consumption and production

Sector of application
Energy storage, Materials and chemistry, Agriculture and farming for food production, Circular economy of solid wastes, Primary resources management