DEVORTOCORPORATION

Building an Aircraft that Never Has to Land

High-Altitude Pseudo-Satellite (HAPS)

HAPS... What is it?

- ▶ A solar-power aircraft
- Collect energy during the day
- ▶ Run on batteries at night
- ▶ Payload lives in stratosphere

Existing satellites

- ▶ Require a rocket launch
- ▶ Expensive aerospace products
- Confined to prescribed orbits
- Cannot be upgraded or maintained

HAPS solves these issues, and...

- Provides atmospheric monitoring (climate/weather)
- ▶ Low signal latency (ideal for 5G telecomm relay hub)
- ▶ Broadband speed data rates (Internet across the planet)

Alternative Attempts

DARPA

- Spent **\$750M** over 15 years
- Both fixed-wing and airship
- All programs canceled

SolarEagle and ISIS

Tier-One Aerospace

- Fully-optimized fixed-wing
- Several new exotic designs
- None made it to production

Odysseus and ApusDuo

Tech Giants

- Acquired at **prototype** stage
- Facebook grounds investment
- Google tried using balloons

Solara and Aquila

Problem

Long and slender wings are too flexible

NASA/AeroVironment Helios, with deflection from lack of stiffness, and its final outcome

Solution

Wings under tension eliminate aero/structural problem

Tethered Uni-Rotor Network (TURN) uses 10X less power without sacrificing hover

Business Model

Long-Term Strategy

- ▶ Initial products for revenue/profit/investment
- ▶ Pave the way for larger TURN embodiments
- Competitive advantages over existing drones

Manufacturing Business Model

- Higher margins from simplified manufacturing
- Offer standard and customized payloads
- Third party retailers and direct sales

Data-as-a-Subscription Service Model

- ▶ Equipment manufactured in-house, lower cost
- ▶ Autonomy with higher endurance, less labor
- ▶ Turnkey solution delivers data to customers

2015	NASA NIAC (\$125k): HAPS Feasibility
2017	PhD Dissertation: Nonlinear Models
2018	AFRL SBIR (\$150k): Proof-of-Concept
2019	CIT CRCF (\$50k): Flight Testing
2020	AFWERX (\$150k): AHRS Algorithms
Today	Group 2: 10-hour endurance drone
+3mo	MVP: Prototyping (ATI)
+6mo	Beta Testing: Final Design (DAR)
+9mo	First Sales: Production (Saxon)
Growth	Group 3: 7-day endurance
	Group 4: 30-day endurance
ω.	HAPS: Persistent flight with solar
	2017 2018 2019 2020 Today +3mo +6mo

Immediate Focus: Bring Group 2 (<55lb) TURN drone to market

Competition for Group 2 UAS

Multirotor

- Minimal flight endurance
- Less design complexity

25-35 min 5lb payload \$35k - \$50k

Fixed-Wing

- No hover or vertical takeoff
- Needs launch apparatus

60-90 min 5lb payload \$100k - \$175k

Hybrids

- Compromise between both
- Most complex aircraft design

30-75 min 5lb payload \$125k-\$200k

Product and Initial Markets

Group 2 Electric TURN Capabilities

- 10-hour flight endurance
- Vertical takeoff; no launch/recovery
- 300 mile range with hover/loiter
- Long-range applications

Initial Markets (02/10/2020)

- Infrastructure: Railroads, interstates, pipelines, power lines; need long-range with hover for inspection (\$45.2B)
- Agriculture: Farmers do not want to be drone pilots; this endurance allows for data-as-a-subscription (\$32.4B)
- www.businessinsider.com/commercial-uav-market-analysis

Traction

Awarded \$475,000 of R&D funding

Journals/Conferences/Publications

- PhD Dissertation (2017): Design, Modeling, Control, and Simulation for a Novel Eternal Flight System.
- AIAA Aviation (2015): A Complete Derivation of the Plant Model with Nonlinear Dynamics.
- AIAA GNC (2015): A Complete Derivation and Simulation of the Inner Loop Controller.

Prospective Customers

Accolades

Two Patents Issued

- Vehicle physical embodiment
- Controls for waypoint navigation

Team

Justin Selfridge, PhD Founder and CEO

7 years at NASA Langley in adaptive control design for experimental aircraft

Al Waddill President

35 years Head of Sales for Groen Brothers Aviation in advanced vertical takeoff

Industry Partners

www.advancedtechnologiesinc.com

Design • Analysis • Research www.darcorp.com

Financials and Potential Growth

Projections for Group 2

- \$150k per unit price
- Y1: 32 units for \$4.8M revenue
- Y2: 80 units for \$12.0M revenue
- Y3: 200 units for \$30.0M revenue

Growth from Future Products

- Group 3: \$1.2M unit price (7-day endur)
- Group 4: \$5.0M unit price (30-day endur)
- HAPS: \$20.0M unit price (persistent)
- Aero/Defense: 8X-12X EBITDA

Potential for HAPS

- Telecom Infrastructure (\$100B by 2026)
- Satellite Manufacturing (\$271B in 2020)
- No launch costs and 1/10th the price
- Satellite capabilities for large/medium businesses

Persistent flight is mankind's last great aviation milestone

www.turnuav.com