Technologies for Decarbonisation

VOW

www.vowasa.com

SUMMARY

- 1. Corporate presentation
- 2. Biogreen technology
- 3. Biomass applications
- 4. Sludge and digestate
- 5. Polymers and plastics
- 6. Summary

ABOUT VOW AND ETIA

OUR DRIVERS

Corporate Social Responsibility

Carbon mitigation strategies and roadmaps to become climate neutral becoming a cornerstone activity for industrial groups

Fossil fuel independence

Increasing effort towards elimination of coal and natural gas in the industry driven by both price uncertainty as well as sustainability

Future is electric

Growth of the renewables providing easy access to low carbon electricity and prioritizing it as main energy source

Carbon tax increase

Considered as most

powerful tool to combat

the climate change,

carbon tax is increasing

rapidly

Waste generation

Increasing amount of waste and residues resulting from activities and demanding efficient valorisation

CRUISE INDUSTRY CLIENTS

leading position with 253 systems in operation and 127 systems on order

LAND BASED INDUSTRY CLIENTS

leading position with 150 systems in operation and 9 systems on order

IMPORTANT DIFFERENTIATORS

	COMBUSTION - INCINERATION Fumes	GASIFICATION Gas	PYROLYSIS Gas, Liquid, Solid
Objective	To eliminate the waste	To produce syngas from waste	To recycle the waste into chemicals
Main output	CO2, H20	CO, H2, (N2)	CH4, H2, CO, O2, C, OIL
Principle	Complete combution	Partial combustion	No combustion
Energy to run the process	Combustion of the waste	Partial combustion of the waste	External
Syngas production	0	High	Medium to high
Syngas calorific value	-	Low	High
Syngas valorization	-	Heat, steam, electricity, molecule	Heat, steam, electricity, molecule
Oli production	0	0	Medium to high
Oil valorization	-	-	Fuel, green based molecule
Char production (C)	0	Almost 0	Low to high
Char valorization	-	-	Biocoal (fuel) Biochar (soil) Biocoke (Metallurgy) Carbon black,
Added value output	(\$) (Heat)	\$\$ (Syngas)	\$\$\$ (Syngas, liquid, solid)
Impact on carbon footprint	0 (CO2 emission)	+ (if CO and CO2 captured)	++ (C sequestration)

SOLUTION RELEVANT TO THE PROBLEM

SALES STRATEGY

IMPACT TOWARDS RENEWABLE ENERGY

Pyrolysis can allow to convert waste to substitute fossil solid, liquid and gas fuels - depending on operating conditions

TECHNOLOGY

VOW

ETIA

SALES STRATEGY

BIOGREEN: SPIRAJOULE INSIDE

Spirajoule - Electrically heated screw conveyor

Process temperature easily adjusted up to 850°C (1200°C under development)

Industrial and proven technology

Simple, easy to operate

Robust, low maintenance

Plug flow system, homogenous treatment

Fossil free technology

Flexible: capacity to reach each product specifications

A precise, continuous and homogenous treatment for high guality final products

MAIN APPLICATIONS:

HEATING IN CONTROLLED **ATMOSPHERES**

Oxidising conditions

Reducing conditions (pyrolysis)

installed units

KEY FEATURES

Complete solution for your business

Strong business model

Wide range of feedstock

Powered by electricity

Precision of treatment

Adjustable operating conditions

Track record of over 15 years

SALES STRATEGY

IMPLEMENTATIONS

FINE TUNED PROCESS CONDITIONS

TESTING CENTERS

Our strategy: world-wide competence centers.

Around 100 tests each year since 2009

Process performance measurement

Analysis of the feedstocks and syngas composition

Mass and energy balance of the process

Performing the small scale thermochemical process on pilot equipment provides the information necessary for designing industrial unit according to performance and business model validation

BIOGREEN PRODUCT RANGE

FROM PILOT SCALE TO INDUSTRIAL PLANTS

RnD units

Mobile and stationary pilot equipment for testing and development of new bio-based products

Containerised units

Compact, plug & play equipment for simple installation and easy configuration on site.

Stationary plants

High capacity equipment for stationary applications, often several machines operating in parallel.

BIOMASS TREATMENT

VOW

E T I A

LA-010

CORPORATE PRESENTATION CARBON NEGATIVE SOLUTION

MULTIPLE APPLICATIONS

ETIA

BIOCHAR FOR AGRONOMY

APPLICATIONS:

- To the soil (sowing, transplanting, planting)
- Mixed with an organic soil
- Mixed with a growing medium

www.biogreen-energy.com

CORPORATE PRESENTATION BIOCHAR PRODUCTION

CONVERSION OF GARDEN WASTE INTO VALUE

VALUE RECOVERY FROM WASTE – CARBON SEQUESTRATION – CIRCULAR ECONOMY WITHIN THE REGION

CORPORATE PRESENTATION BIO-COKE PRODUCTION

DECARBONIZATION OF METALLURGY SECTOR

HIGH CARBON CONTENT BIO-COKE – REDUCTION OF CO₂ EMMISSION FROM STEEL MANUFACTURING – SUBSTITUTION OF FOSSIL FUELS

BIO COKE PRODUCED - EXAMPLE

		Pine tree 550	Pine tree 750
Dry residue	%	94	99,997
LHV as received	MJ/kg	26,9	32,9
HHV dry basis	MJ/kg	29,5	33,25
LHV dry basis	MJ/kg	28,8	33,03
Carbon content	%	78,7	91,7
Hydrogen content	%	3,4	1,04
Nitrogen content	%	0,44	0,4
Ash content d.b.	%	4,1	5,6
Total sulfur	%	0,017	0,065

Pyrolysis: process regulated by operating conditions

ETIA Introduction

SLUDGE AND DIGESTATE

教水历泥资入市沙/1

VOW

ETIA

指定可燃制

SEWAGE SLUDGE TO SYNGAS AND BIO COAL

INDUSTRIAL PLANT IN JAPAN

SEWAGE SLUDGE AND DIGESTER

N2

SPJ MOTOR

SET-ROINT

Exhaust

VOW

POLYMERS

CHILLER

VOW

L' LA

GIVING WASTE VALUE

CONVERTING END OF LIFE TIRES INTO ENERGY AND RCB

VOW

DECARBONIZE AND ENERGIZE WEBINAR

EXAMPLE: PLASTICS TO ELECTRICITY

FIRST DEMONSTRATION PLANT

33

PLASTICS TO HEAT

OUR APPLICATIONS

Minerals treatment

Heat for variety of applications: calcination, dehydration of minerals, catalyst regeneration, devolatization, sterilisation of inorganic powders and many more

Biocoal

Replacing fossil coal in power plants by biocoal coming from biomass

First industrial demonstration unit in Japan to produce biocoal from sewage sludge

Biocoke

Replace the fossil coal by biogenic fuels (biocoke) in metallurgy industry as a reducing agent First pilot plant implemented in Sweden, another two machines under production

Biochar

Creation of a circular economy with biomass and agriculture residues while keeping carbon in soil Producing first certified biochar in France for water retention (Hydrochar WB1)

Bio-oil

Producing biooil to create liquid flavours and food aromas. Industrial machines in operation with the first implementation done in 2003

Wood vinegar under development

Bio-methane and hydrogen

Producing biomethane or/and hydrogen from biomass that cannot be used directly in the digesters

First pilot plant under evaluation

Plastics to molecules (CH4 + H2)

Conversion of plastics into gas molecules like methane or hydrogen

First pilot (R&D) under development and evaluation

End of Life Tires treatment First pilot (proof of concept) realized and successful First industrial plant under construction

Minerals treatment application

Dehydration of nanocoated Ca(OH)₂

- 1 MWh of energy storage
- module of dehydration $Ca(OH)_2 => CaO + H_2O$
- module of rehydration CaO + steam => Ca(OH)₂

DECARBONIZE AND ENERGIZE WEBINAR

Scanship Holding ASA Lysaker Torg 12, 1366 Lysaker, NORWAY Scanship AS Nedre Langgate 19, 3126 Tønsberg, NORWAY

> Scanship Poland Sp. z o.o. Al. Zwycięstwa 96/98 81-451 Gdynia, POLAND

Scanship Americas Inc. 3711 SW 47th Avenue, # 201 Davie, FL 33314, USA

VOW

Avenue, # 201 Davie, A

ETIA SAS Carrefour Jean Monnet La Cr St Ouen, BP 20101, 60201 Complègne Cedex, France

www.etia-group.com | sales@etia.fr

phone: +33 3 44 86 44 20

Carrefour Jean Monnet La Croix St Ouen, BP 20101, 60201 Compiègne Cedex, France

A PART OF

VOW

THANK YOU FOR YOUR ATTENTION

www.vowasa.com www.etia-group.com

