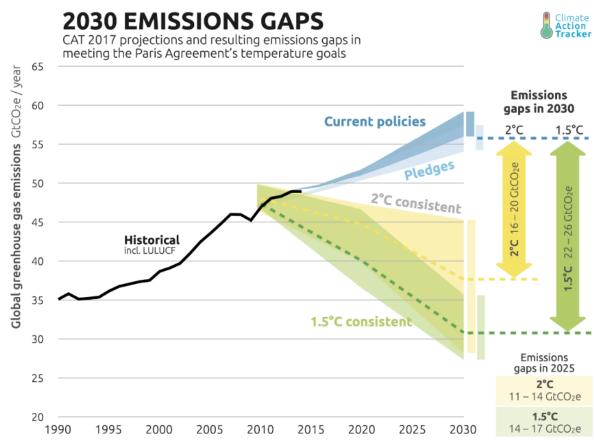


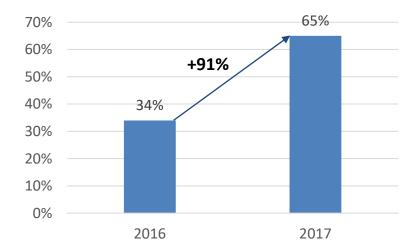
SWAC Technology

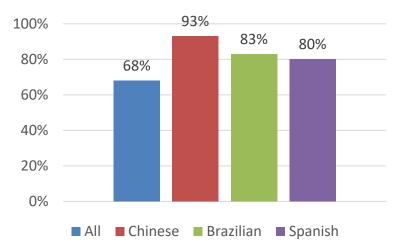
VALUE PROPOSITION

1. Sustainability and Tourism


- 2. SWAC principle
- 3. Bardot Ocean

Climate change clock is ticking...


The "gap" range results only from uncertainties in the pledge projections. Gaps are calculated against the mean of the benchmark emissions for 1.5°C and 2°C.


- Nearly all the countries gathered in Paris for COP21 agreed to significantly decrease their greenhouse gases emissions.
- Nevertheless, the pledges taken by the international community are far beyond what is needed to keep global warming below +2°C.
- Strong efforts are ahead of us to boost renewable energies and energy efficiency.

COP21 · CMP11 PARIS 2015 UN CLIMATE CHANGE CONFERENCE

According to Booking.com in its Sustainable Travel Report 2017:

The number of travelers staying in an ecofriendly or 'green' accommodation at least once could double this year with 65% of global travelers expressing this intention versus 34% who stayed in one or more last year.

68% of travelers confirm they are more likely to consider choosing an accommodation knowing that it was ecofriendly, with Chinese (93%), Brazilian (83%) and Spanish (80%) travelers the most likely.

A growing demand for sustainability (2/2)

The WTTC set ambitious target for the whole sector...

WORLD TRAVEL& TOURISM COUNCIL

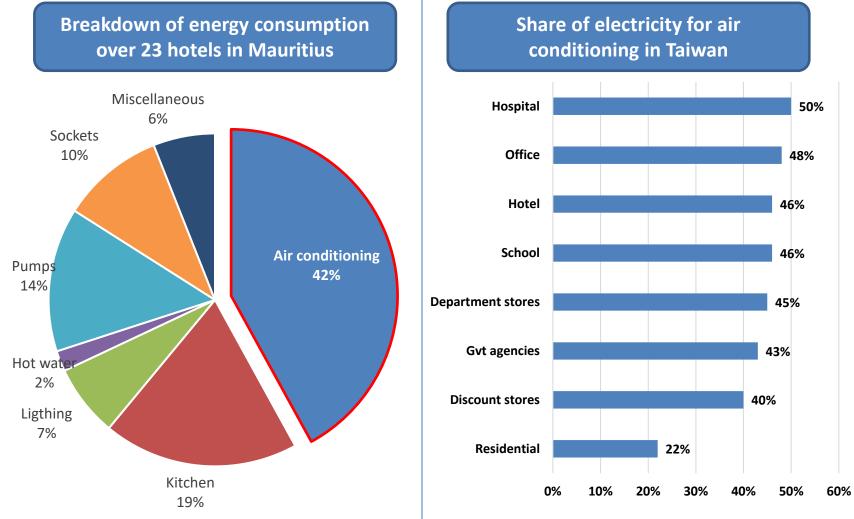
Reduce CO₂ emissions **by 50% by 2035**

"We aspire to achieve a target of 50% reduction of CO2 emissions across the industry by 2035 by learning from others and sharing examples of best practice across our industry that reduce energy use, improve energy efficiency and increase the use of renewable energy. We set ourselves the interim target, in terms of CO2 emission reduction, of 30% by 2020 with an international agreement on global emission reduction, or 25% by 2020 in the absence of such an agreement."

Source: World Travel & Tourism Council, Leading the challenge on Climate Change, 02/2009

1. Sustainability and Tourism

2. SWAC principle

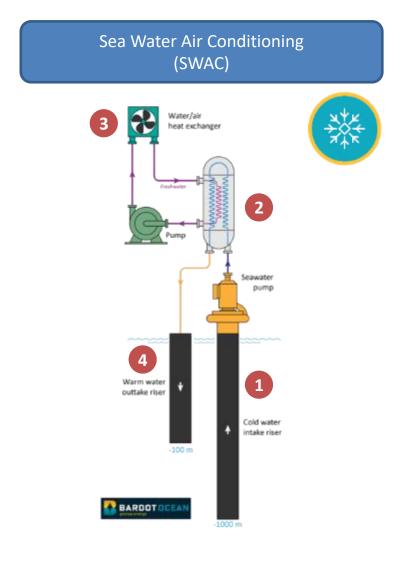

3. Bardot Ocean

In tropical areas, cooling represents a lot of electricity

Source: PNEE - Project feedback and best practices, Business Mauritius

Source: Taiwan Research Institute (2015), Taiwan Green Productivity Foundation (2015)

SWAC – Renewable cooling


Use DEEP sea water temperature to supply cooling

BARDOTOCEAN

enius energ

- 1 Cold deep water (**5-7°C**) is pumped to the process through a HDPE pipe.
- 2 Its cooling content is transferred to the chilled water loop through heat exchangers.
- 3 The chilled water loop provides cooling to the connected buildings through water/air heat exchangers.
- The heated-up sea water (11-12°C) is then released back into the ocean without any change in its chemical and biological content.

No refrigerant are needed in the process

Efficient

genius energy

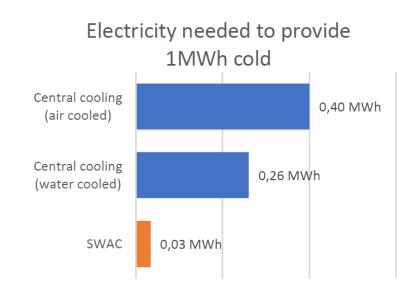
BARDOTOCEAN

• Uses 10 times less electricity than average chiller

Predictable

• Foreseeable cooling price, unlike oil-based electricity

Kigali-ready


• No fluorated gases that will be phased out in the coming years

Environmental friendly

• No environmental impact

Very resilient

• Up to 50 years lifetime

-90% on 50% of the electricity consumption means an overall saving of 45%

Efficient

BARDOT

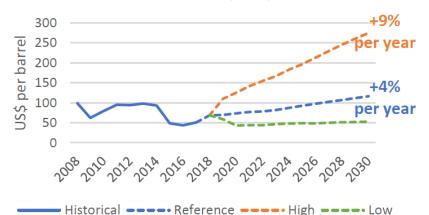
• Uses 10 times less electricity than average chiller

Predictable

• Foreseeable cooling price, unlike oil-based electricity

Kigali-ready

• No fluorated gases that will be phased out in the coming years


Environmental friendly

• No environmental impact

Very resilient

• Up to 50 years lifetime

WTI crude oil spot price

Source: Annual Energy Outlook 2019, U.S. Energy Information Administration

According to US Energy Information Administration, oil price could increase up to 9% per year until 2030.

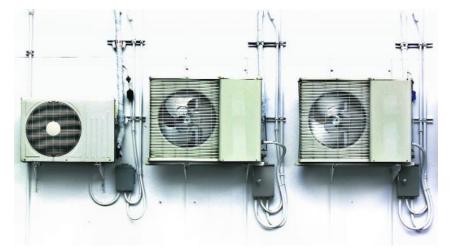
Efficient

• Uses 10 times less electricity than average chiller

Predictable

• Foreseeable cooling price, unlike oil-based electricity

Kigali-ready


• No HFC gases that will be phased out in the coming years

Environmental friendly

• No environmental impact

Very resilient

• Up to 50 years lifetime

HFC gases will be progressively phased out from 2029.

Efficient

genius energy

BARDOTOCEAN

• Uses 10 times less electricity than average chiller

Predictable

• Foreseeable cooling price, unlike oil-based electricity

Kigali-ready

 No fluorated gases that will be phased out in the coming years

Environmental friendly

• No environmental impact

Very resilient

• Up to 50 years lifetime

Final Environmental Impact Statement for the Proposed Honolulu Seawater Air Conditioning Project, Honolulu, Hawai'l

		Short-term impact	Long-term impact
Archeological, historic and cultural ressources			
	Harbors, Shipping and Navigation		
	Pipelines, Outfalls and Dump Sites		
	Ocean Recreation		
	Ocean Research		
Built resources	Commercial Fishing		
and human	Military Activities		
uses	Utilities		
	Ambient Noise		
	Hazardous and Toxic Materials		
	Roadways and Traffic		
	Human Health and Safety		
Social and econo	Social and economic resources		
Visual resources	Visual resources		
Natural hazards			
	Bathymetry, Geology and Sediments		
Marine	Tides and Currents		
resources	Marine Water Quality		
lesources	Marine Biota		
	Topography, Geology and Soils		
	Climate		
Terrestrial	Air Quality		
resources	Surface Waters		
	Groundwater		
	Terrestrial Biota		

Legend:

Less than significant adverse effect

Beneficial effect

Efficient

• Uses 10 times less electricity than average chiller

Predictable

• Foreseeable cooling price, unlike oil-based electricity

Kigali-ready

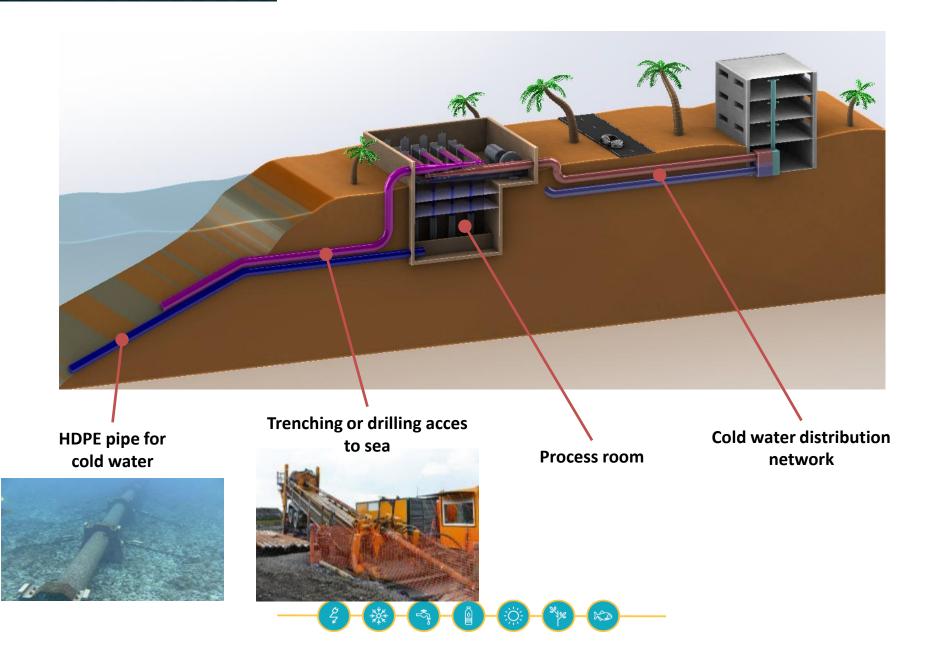
• No fluorated gases that will be phased out in the coming years

Environmental friendly

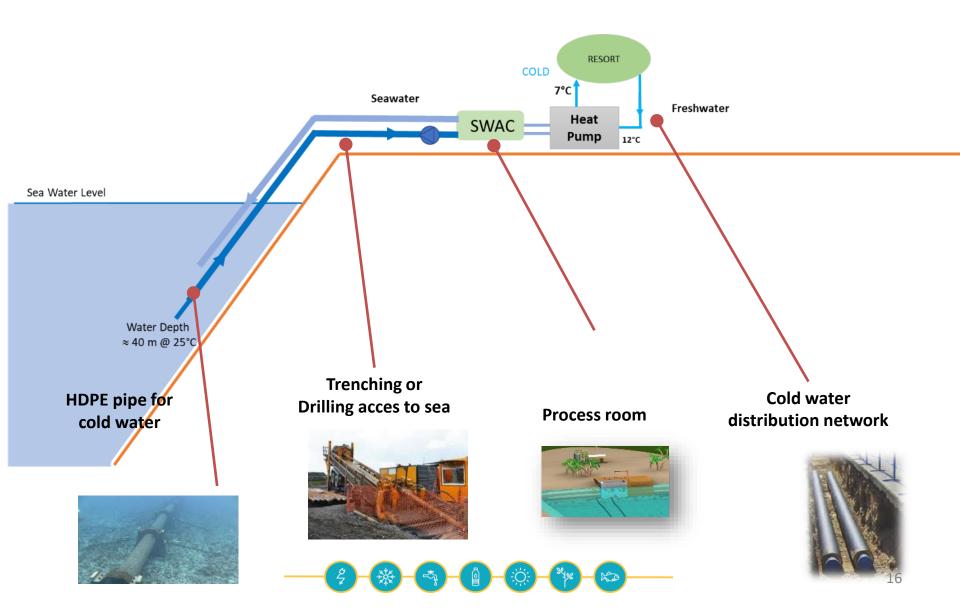
• No environmental impact

Very resilient

• Up to 50 years lifetime



« After **26 years of uninterrupted operations**, the lifetime of the 40" deep sea water pipeline was further increased by replacing pipeline anchors at 500 ft depth. It is estimated that this work **extended the pipeline life by approximately 20 more years**. »


Typical installation



Hybrid SWAC installation

Thalassotherapy and spa

BARDDTDCEAN

nius energ

Already experienced at the InterContinental Bora Bora Resort & Thalasso Spa (French Polynesia) or Utoco Deep Sea Therapy Center and Hotel (Japan), using pristine and mineral-rich water from the ocean's depths can increase spa and hotel occupancy and rates.

Cosmetics

Already developed by Dalton or Shu Uemura, mineral-rich deep water can be used in cosmetics and are alleged to better moisturize skins and increase collagen production compared to regular cosmetics. Offering such products can also increase attractiveness and generate additional revenues, including after their stay.

Bottled water

Bottled deep-ocean water is getting more and more popular, with several brands expanding on asian and northamerican markets. Providing local deep-ocean water to clients can enrich their experience and generate additional revenues, including after their stay.

Aquaculture

Deep ocean water contains high concentrations of the dissolved inorganic nutrients essential to plant growth, while the near total absence of pathogens, plants and particulates makes the water particularly well suited for the culture of sensitive organisms and also for the development of pure culture strains.

Irrigation

After the heat exchanger, ocean water is still cold and can be used to foster natural condensation, providing fresh water for irrigation.

SWAC proposed preliminary design

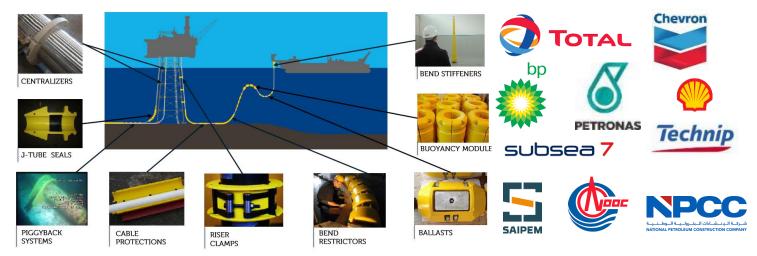
RDOT OCEAN a Value-Park Brand

BA

genius energy

Project Number	Park Hotel Kaafu	SWAC DESIGNER				
Author Date	PGU 14/05/2019 Input Deep Sea Pipe DPS OPS OPS	Landfall Point Pipes (2) LFP SSP PR	Fresh Water loop FWL FWL CDP FWL CDP Fresh Water U Fresh Water U Fresh Water U Load Fact	2500 RT 32 Adim Optional 32 ocDP 7 °C Optional 7 © CDP 12 °C Optional 12		
	Main characteristics					
			Cooling capacity	8.8 MW _c 2,500 RT		
		Cooling demand	22.5 GWh _c			
	ItemValueDPS Length4000Deep sea T°5,5	00 m Mandatory None	Load factor	29.2%		
	DPS Depth1000OPS Length1000	m Optional None m Mandatory None	Resort chilled water loop	7°C – 12°C		
	Shore Pipe Length 0 T* @ PR 6,5 PR Shaft -0,2 FWL Length 100 SW/DS/1,11	m Optional 0 °C Optional 6,5 Deep Sea T° + 1,5°C m Optional 0 Below SWL m Optional 10	Deep sea pipe characteristics	Length: 4,000m Outside diameter: 900mm Depth: 1,000m Water temperature: 5.5°C		
		Outer pipe characteristics	Length: 1,000m Outside diameter: 900mm			
		Process room characteristics	Shaft: -1m (from sea level) Typical area: ~100m ²			
		EER	32			

- 1. Sustainability and Tourism
- 2. SWAC principle
- 3. Bardot Ocean

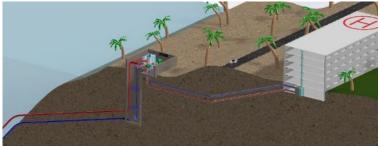


Why Bardot Ocean?

Bardot Group has a 14 years successful track record in oil & gas offshore projects, developing subsea solutions for more than 60M€ revenues.

En 2015, Bardot a livré avec succès 6 risers de prise d'eau en haute mer à SAIPEM/TOTAL pour améliorer le processus de FPSOS de KAOMBO.

Bardot Group decided to capitalize on this success and invest in ocean renewable energy.



- Bardot has entered into an exclusive commercial negociation for a SWAC development for a large hospital in La Réunion island.
- Client: Groupe Hospitalier Sud Réunion (GHSR)
- Project details
 - Deep Sea SWAC (high performance)
 - Capacity: 6.6MW_c (1900RT)
 - Pipe length : 6 8 km
 - Expected benefits : 90% of electricity saving
- Bardot Ocean offer
 - Project finance
 - EPCI
 - Operation and maintenance for 20 years with a cooling purchase agreement.

OTEC Labs In the world

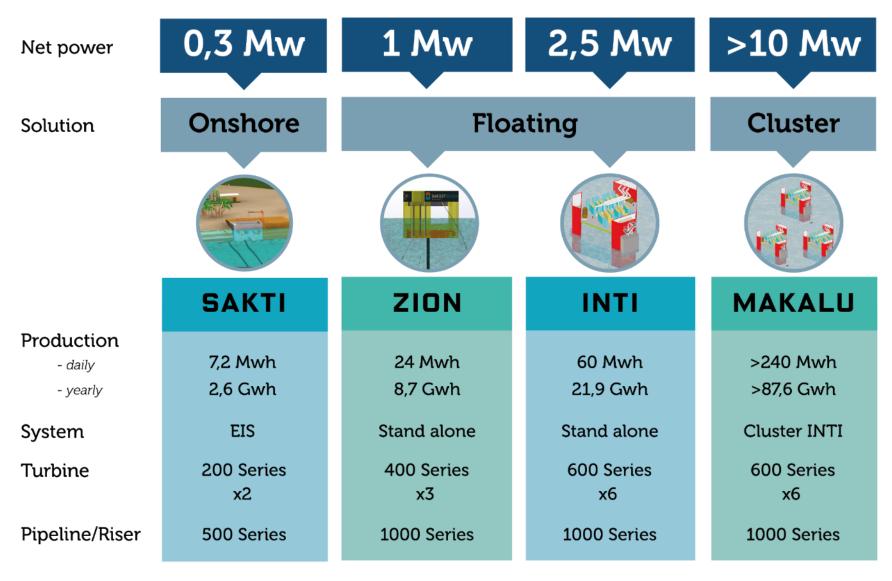
OTEC around the World

- 1) 105 kW OTEC, Hawaii, US
- 2) Lab-scale OTEC, Netherlands
- 3) 15 kW OTEC, La Réunion

- 4) 100 kW OTEC, Kumejima, Japan
- 5) 30 kW OTEC, Saga, Japan
- 6) 20 kW OTEC, Korea

5kW radial hermetic turbo-generator

Bardot Ocean SWAC offer


Areas	TEMPERATE & SHALLOW SEAS	TROPICAL SEAS	LAKES
Cold Power (Ton)	0 to 10+++	1 to 10	0 to 10 ++
Technology	Hybrid	High Performance deep water Cooling	Direct Pumping
СОР	7	30	30
	ΤΑΚυ	UPSALA	PERITO
BARDOT SOLUTIONS	Worldwide	Tropical area	Lakes area
	HYBRID SOLUTION WATER T° : 15°C Water Depth : 50m Low Capex	HIGH PERFORMANCE WATER T° : 5 To 7°C Water Depth : 600m – 1000m High Capex	HIGH PERFORMANCE WATER T° : 7°C Water Depth : 20m Low Capex

Bardot Ocean OTEC offer

SWAC / OTEC synergies and differences

ITEM	SWAC	OTEC	Resources Pooling
Pumping System			
A deep sea water pipe	\checkmark		Yes But Otec Increase Pipe Diameter
A deep sea outake pipe	\checkmark		Yes But Otec Increase Pipe Diameter
A surface Intake water pipe	×	\sim	NO
Seawter Pumps	\checkmark		Yes But Otec Increase Pumps Capacity
Process room			
Process room	\checkmark		Yes But Otec Increase PR Size
Shaft	\checkmark	\sim	Yes But Otec Increase Shaft Depth
Double Deck	×	\checkmark	For Condensors
Heat Exchanger Sea Water / Fresh Water		×	NO
Heat Exchanger Sea Water / Frio Fluid	×		NO
OTEC Turbine	×		NO
Distribution			
Cold fresh Water loop	\checkmark	×	Depending on Hotel design
Cooling storage bottles	\checkmark	X	Depending on Hotel design
Satellite Cooling storage bottles	\checkmark	×	Depending on Hotel design
Power cables loop	X	\checkmark	Depending on Hotel design

Contacts

Guy Bardot, President guy.bardot@value-park.com

