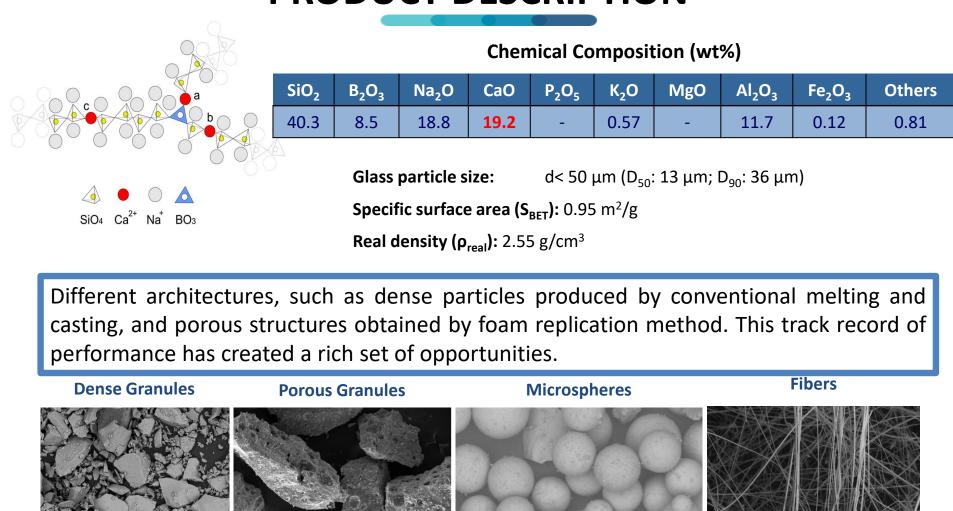
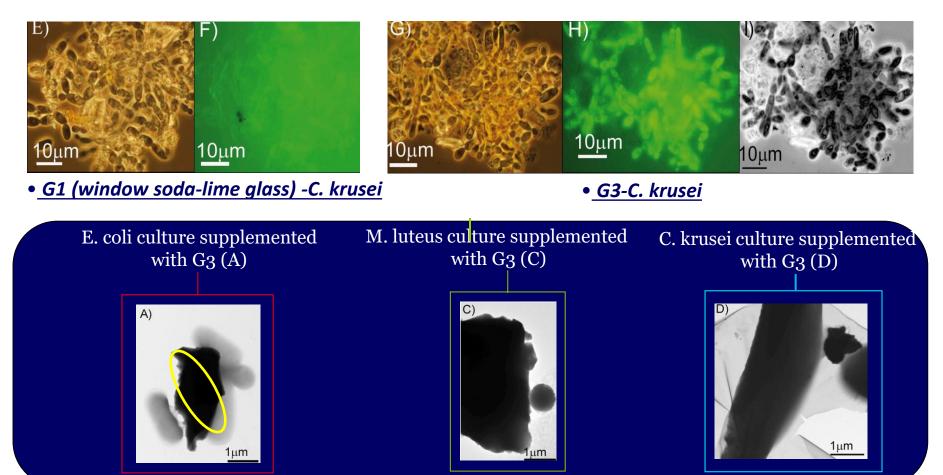

nanker

Centro de Investigación en Nanomateriales y Nanotecnología



G3® BIOGLASS

PATENTED METAL FREE, BROAD-SPECTRUM ANTIMICROBIAL MATERIAL


PRODUCT DESCRIPTION

lacide SP F L

WORKING MECHANISM

- Quick membrane depolarization (after 1h) was observed using a potencial sensitive fluorescence probe (oxonol)
- It was attributed to the high puntual concentration of Ca²⁺ at glass/membrane interface region.

The high concentration of Ca²⁺ close to membrane distorted the membrane electrochemical potential gradient avoiding nutrient exchange, inducing the death of the cell.

POSITIONING

Disadvantages of other biocides

Benefits of G3® Glass

Classic organic biocides have limited their applications due to their:

- Low heat resistance
- High decomposability
- Durability-Short life
- High toxicity
- Antimicrobial resistant

SAFETY: G3[®] biocide is considered **noncytotoxic** according ISO 10993-5, standard for biomaterial and medical device testing.

Microbiologycal Efficacy Broad spectrum Fast-acting Not antimicrobial resistance generator

SCIENTIFIC REPORTS

OPEN Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle

Received: 29 May 2015 Accepted: 20 July 2016 Published: 12 August 2016

José S. Moya^{1,2}, Arturo Martinez³, Roberto López-Piriz¹, Francisco Guitián³, Luis A. Diaz¹, Leticia Esteban-Tejeda², Belén Cabal¹, Federico Sket⁴, Elisa Fernández-Garcia¹, Antoni P. Tomsia⁵ & Ramón Torrecillas¹

Versatiliy

Excellent compatibility

with materials

Easy to use

Low-cost

Security

Not toxic

Biodegradable

Controlled release

OPEN SUBJECT AREAS:

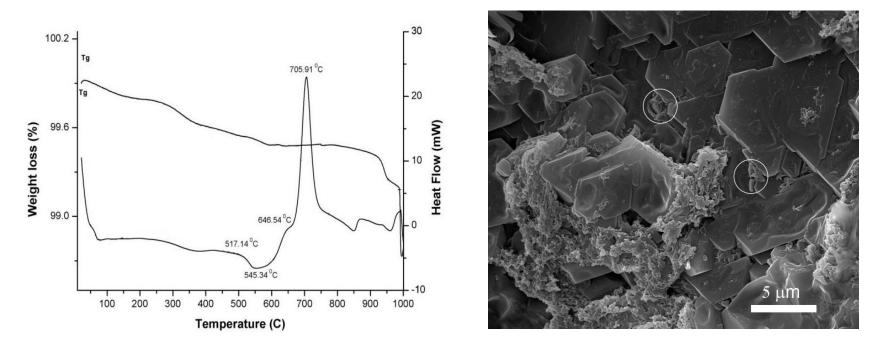
SUBJECT AREAS: INFECTION BIOMEDICAL MATERIALS ANTIMICROBIAL RESISTANCE

A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications

Belén Cabal¹, Luís Alau², Fabio Cafini², Ramiro Couceiro³, David Sevillano², Leticia Esteban-Tejeda⁴, Francisco Guitián³, Ramán Tarreallas^{1,5} & José S. Moya⁴

Received

BROAD RANGE OF ANTIMICROBIAL ACTIVITY


	Gram negative bacteria					
	E. coli	P.aeruginosa	L. pneumophila	Sphingomonas spp.	S. typhimurium	S. putida
Glass G3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

	Gram positive bacteria							
	M. luteus	S. aureus	S. epidermidis	S. oralis	S. mutans	B. cereus	B. subtilis	MRSA
Glass G3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

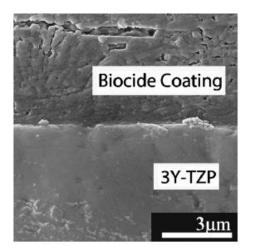
	Yeast	Fungus		
	C. crusei/I. orientalis	Trichoderma spp.	P. aurantiogriseum	
Glass G3	\checkmark	\checkmark	\checkmark	

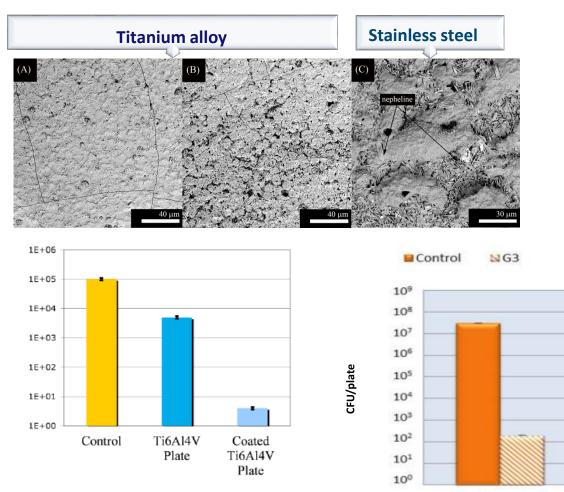
HEAT RESISTANCE

After heat treatment at 750°C, devitrification of the G3 glass leads to a **glass-ceramic** material composed of two crystalline phases (combeite and nepheline) dispersed in a glassy matrix. The CaO content in the residual glassy phase is similar to that of the parent glass.

In addition to its bactericidas activity, the **mechanical properties** of the Glass-Ceramic are twice that of Glass: $\sigma_{f=130}$ MPa , Kic=1.6 MPa m^{1/2}

	Transition temperature T _g (ºC)	Thermal expansion coefficient α (10 ⁻⁶ K ⁻¹)
G3 [®] GLASS	540	14.2

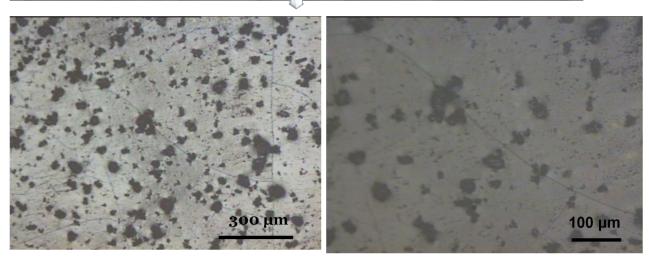

COATINGS ON DIFFERENT SUBSTRATES


Effectiveness guaranteed, meets Japanese Industrial Standard JIS Z 2801 and ISO22196, which measures the antibacterial activity

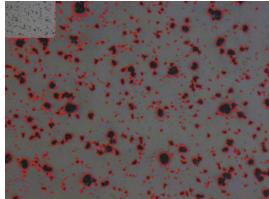
Glass

Ceramic

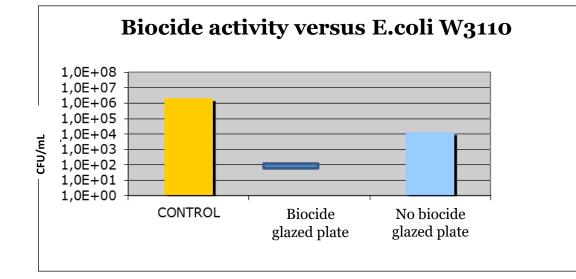
Stainless steel


*Esteban-Tejeda et al. Material Letters 2013

*Esteban-Tejeda et al. International Journal of Molecular Sciences 2014;15:13030-44 *Díaz LA et al. Journal of the European Ceramic Society 2016

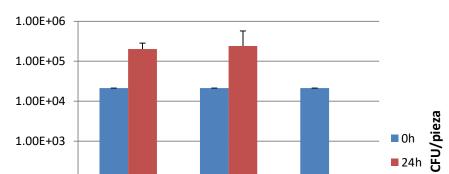

CFU/plate

COATINGS ON DIFFERENT SUBSTRATES


G3[®] (heat-treated) on glazed Al₂O₃ plates (750 °C -30 min)

Calculation of the coated area:

Aprox. Quantity of the Biocidal Glass 14.9%



RESULTS IN PAINTS

Effectiveness guaranteed, meets Japanese Industrial Standard JIS Z 2801 and ISO22196, which measures the antibacterial activity

SamplesDescriptionControlPetri PlatesBlankPainted samples (5 x 5 x 0.2 cm) without G3® glassSamplePainted samples (5 x 5 x 0.2 cm) with G3® glass

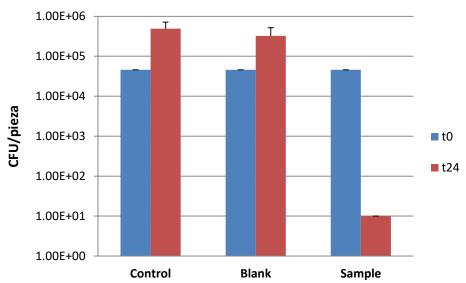
Test on Antimicrobial Efficacy: ISO 22196:2011

Blank

Sample

S.Aureus ATCC 8739

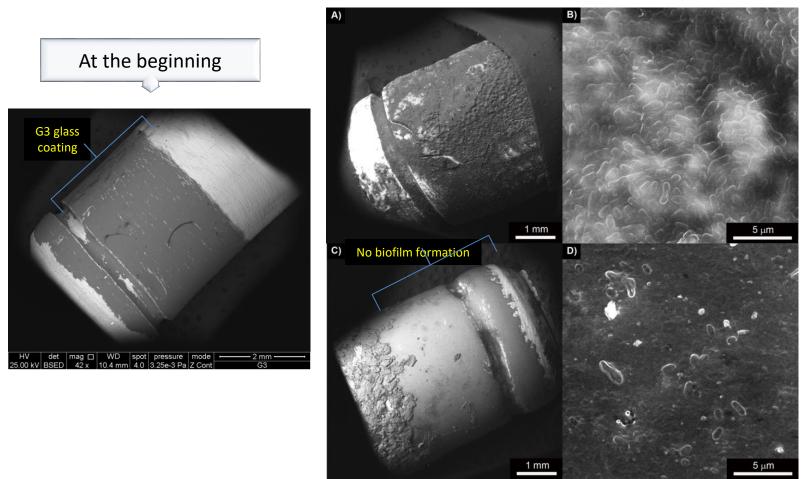
CFU/sample


1.00E+02

1.00E+01

1.00E+00

Control


MRSA ATCC 43300

RESULTS OF AN IN VIVO STUDY

Scanning electron micrographs at different magnifications of: A) and B) **uncoated** zirconia abutment,

C) and D) G3[®] glassy **coated** zirconia abutment.

Biofilm formation occurred only in the part of the abutment free of coating (Fig 4C) and significantly few microorganisms are shown in the abutment coated with glass G3[®] (Fig 4D).

*López-Píriz et al. Plos One. 2015, 10(10), e0140374

nancker

CSIC CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

All in a 15 Kms Radius at the heart of ASTURIAS

thank you

Mieres Mieres

Oviedo

Nanoker Research, S.L Centro de Investigación en Nanomateriales y Nanotecnología (CINN)

Nanoker Research, S.L. SPS Production

+ Multifunctional Materials Unit CINN C

www.nanoker.com

HQ + Nanomaterials & Microbiology Laboratory CINN