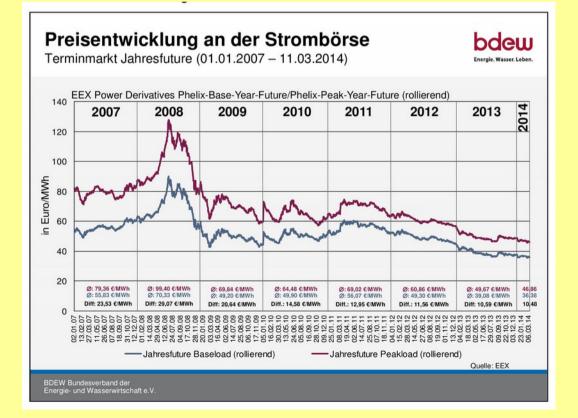
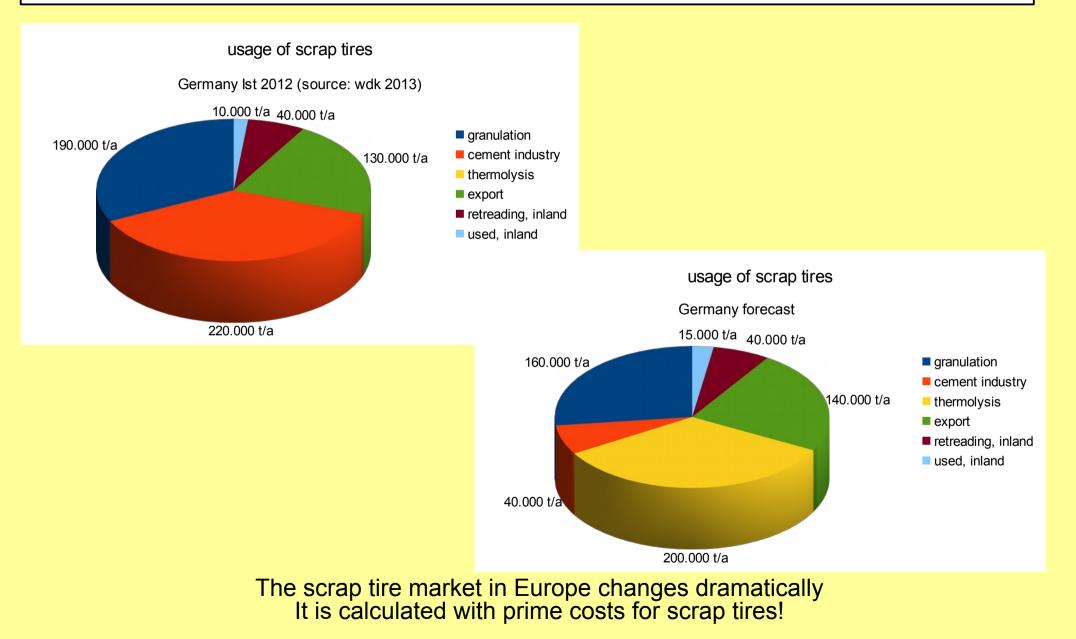
Scrap tire recycling

Current market situation

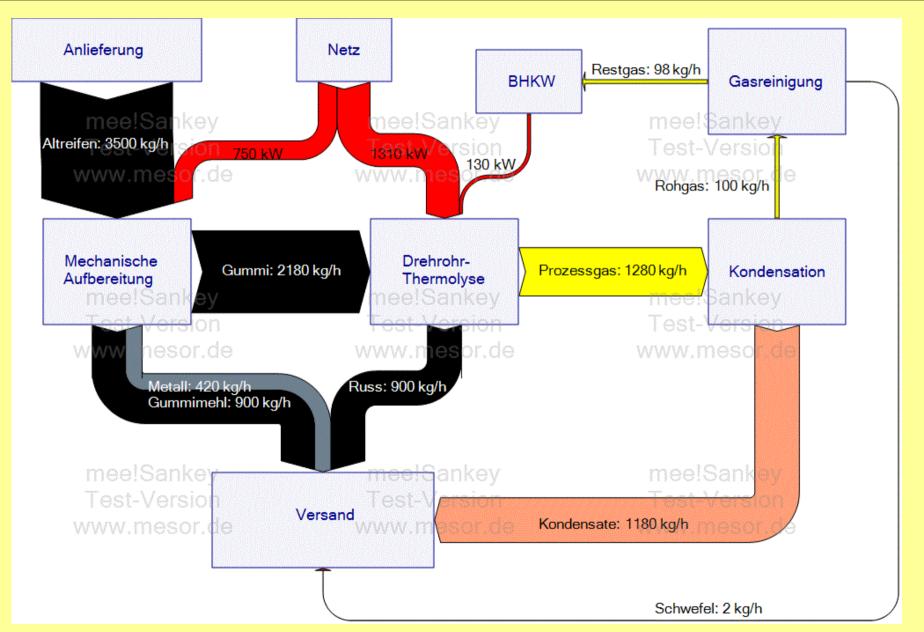


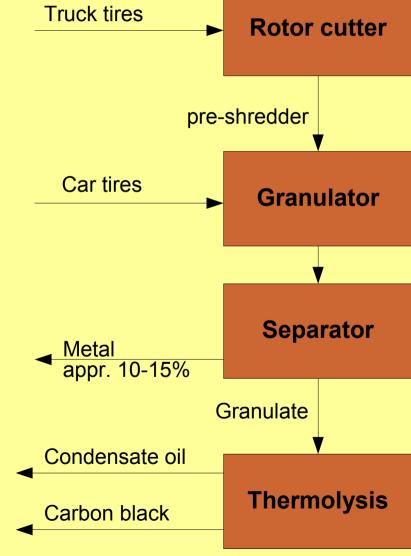
Actually there are different ways for scrap tire recycling:


- Production of rubber granulates
- Energy recovery by production of diesel-like condensates for electric power production
- Thermolysis for production of secondary raw materials

Due to emission regulations and economic reasons a granulation nor simply energy recovery will be more and more uneconomic.

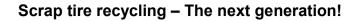
The data sheet shows he prices for electric power in Germany.


Changing of market situation


ENERGIE EFFIZIENZ

Sample mass balance

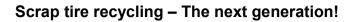
Preparation - overview



Preparation – truck tires

Preparation – pre shred

Specification for the granulator:


 \rightarrow car tires (quartered)

or

 \rightarrow pre-shreddered to 250 x 250 mm

Preparation - granulation

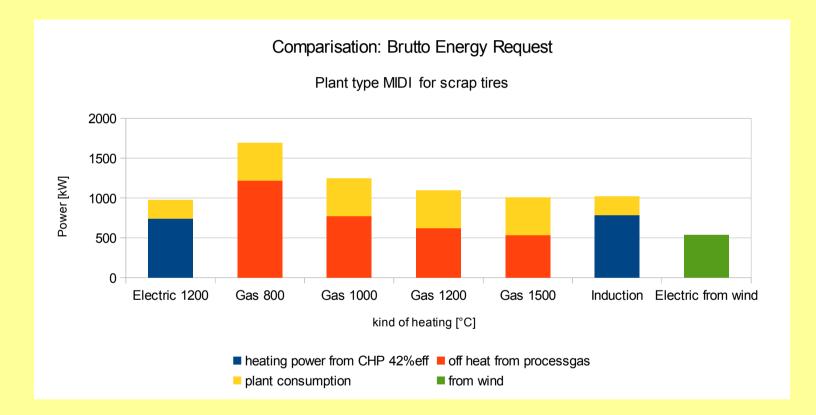
Energy demand 330 kWel. for 3 – 5 t/h < 0,10 kWh/kg

Preparation - granulate

- \rightarrow Metal-free
- \rightarrow <20 mm

Must have: metall-free !

Rotary kiln thermolysis plants

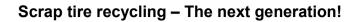


Please note: The needed proces heat will be produced by a burning chamber.

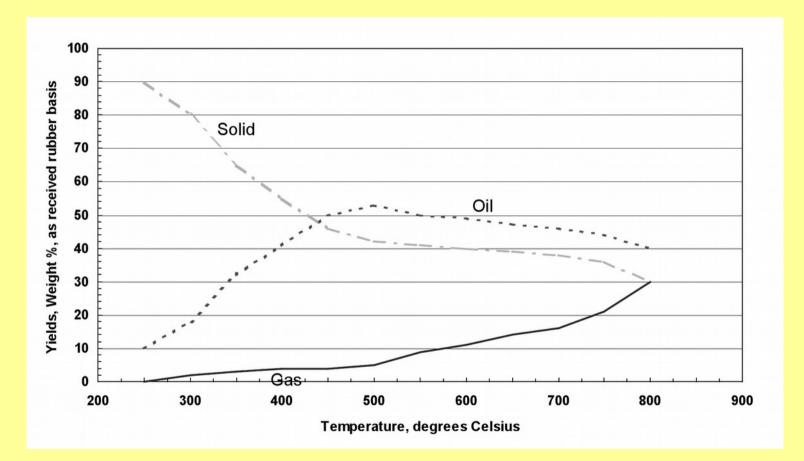
Efficiency

Pyrolysis - Thermolysis

Pyrolysis


Complete thermal decomposition of educt with target of destruction of educt.

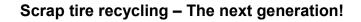
Thermal decomposition in oxygen-poor / (nearly) oxygen-free atmosphere.


Thermolysis

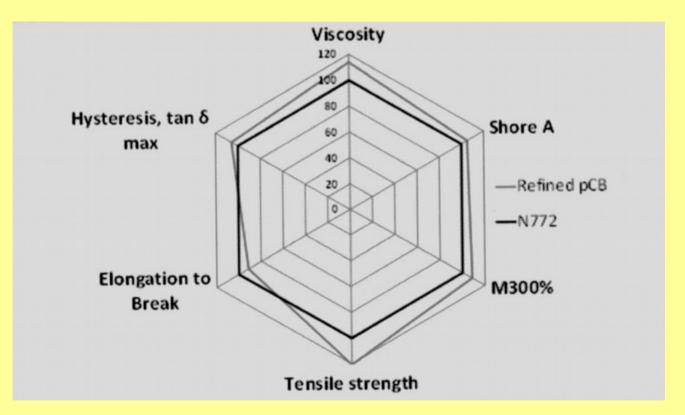
Thermal decomposition with selective and controlled generating of new products.

Thermal decomposition in a definitely oxygen-free atmosphere.

Source: CalRecovery-Report Nr. 1364 Kalifornien 1995


ENERGIE EFFIZIENZ

Product carbon black


	Unit	СВр	N330	N375	N550	N660	Comment
CTAB surface area	m²/g	58,2	82	96	42	36	Our CBp has a higher surface area than that of N500 or N600 series, but not reach N300 series.
BET surface area	m²/g	67,8	76				
Oil absorption number (OAN) Iodine absorption	ml/100g	95,9	102	114	121	90	Indication of carbon structure (high value, high structure-> high viscosity)
number	mg/g	154	82	90	43	36	A measure of surface area and micropore content.
Sieve Residue (45 μm)	%	82	100ppm	100ppm	50ppm	100ppm	Aggregate/agglomerate size as well as metal impurities
Ash content	%	11,7	0,3	0,3	0,4	0,4	Inorganic impuries (not dispose at 550°C)
Water content/ Heating loss at packing	%	1,8	0,4	0,4	0,3	0,3	Important factor for packing and storage.
	CBp = Carbon Black pyrolized						

Please note: The Carbon black quality depends highly due to the kind of process and its parameters!

Product carbon black

Please note: The Carbon black quality depends highly due to the kind of process and its parameters!

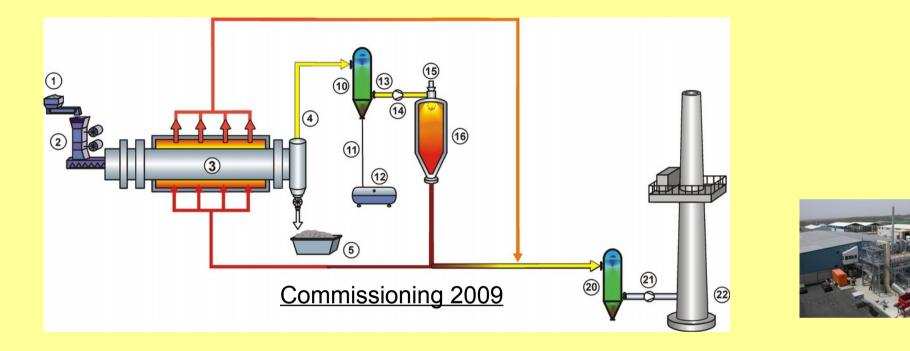
Product condensate oil

The raw condensate oil can be used in multifuel diesel engines or heating oil burners. But: An application as a chemical raw material is economically even more interesting!

Remarks:

The condensate oil is already filtered and distilled during process to clean the oil from larger particles.

Product condensate oil

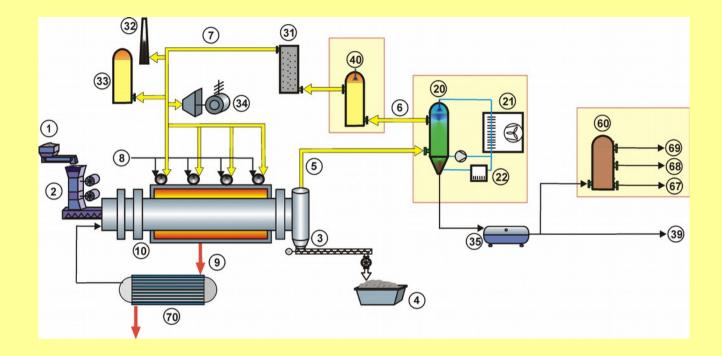

Analysis of scrap tire condensate oil

Hydrogen	Weight %	9,6	9 – 12
Nitrogen	Weight %	0,7	0,5 - 0,9
Ash	Weight %	<0,01	<0,01
Sulphur	Weight %	0,74	0,5 – 1,0
РСВ	mg/kg	< 5	1 – 8
Water content	Weight %	0,06	0,05 – 0,09
Chlorine	Weight %	0,08	0,06 – 0,1
Burning point	°C	< 21	19 – 25
Viscosity at 40° C	mm²/s	2,81	2,6 – 3,1
Calorific value	MJ/kg	39,72	37 – 41
Silicium	mg/kg	36,7	32 - 42
Carbon	Gew. %	87,7	82 – 91
Zinc	mg/kg	7,1	6 – 8,5
Acid content	mg KOH/g	0,81	0,4 – 0,9
Density at 15° C	kg/m³	946	880 – 970

Please note: The Carbon black quality depends highly due to the kind of process and its parameters!

Process 2008

Advantages:

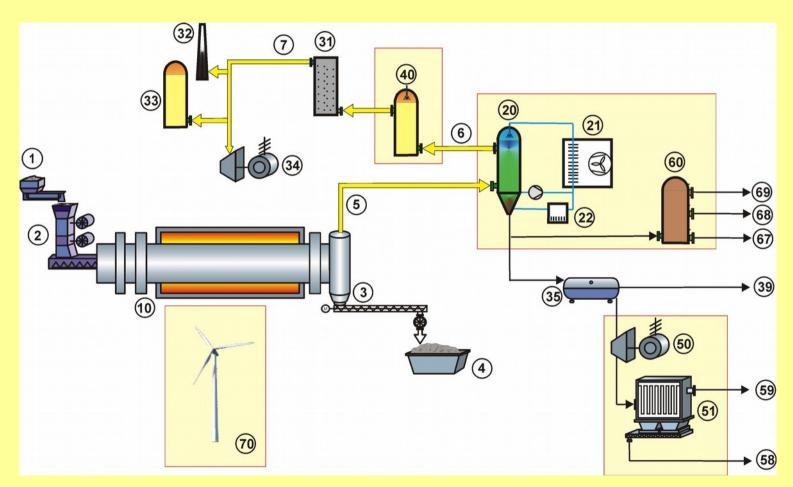

Automatic operation Production of carbon black and oil Product result ok Condensation ok Autothermic operation Remote Control used

Potential for development:

Long warm-up time (8 hours) Smoke gas-cleaning with waste Linked control circuits → due to safety critical! No adjustable heating zones No emergency flare

Process 2012

Enhancements:


Fully automatically operation Short warm-up time Variable heating zone control Self-sustaining operation Remote Control Comprehensive safety concept

Products:

Coke Condensate oil similar to diesel Permanent gas Optional: liquid gas Elementary precipitated sulphur Power for own usage Waste heat (steam, warm water)

Process 2015

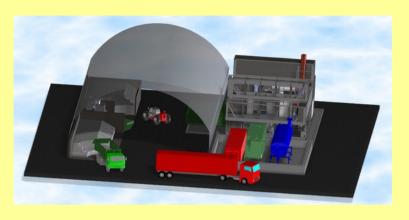
- 1 Hopper 2 Input sluice 3 Thermolysis coke hot 4 Thermolysis coke cold 5 Thermolysis raw gas 6 Permanént gas 7 Permanent gas, cleaned 8 GPL / natural gas
- 20 Condensation 21 Cooler
- 22 Bypass filter
- **31 Activated Carbon Filter**
- 32 Emergency Flare
- 33 Gasometer 34 CHP

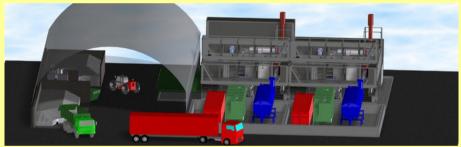
- 10 Rotary kiln unit

Seite 21

- 35 Raw oil storage 39 Thermolysis raw oil
- 60 Condensation
- 67 Super fraction 68 Light oil fraction 69 Heavy oil fraction

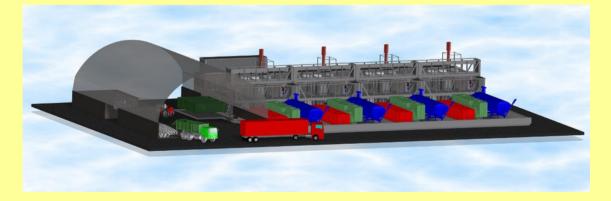
•Optional:

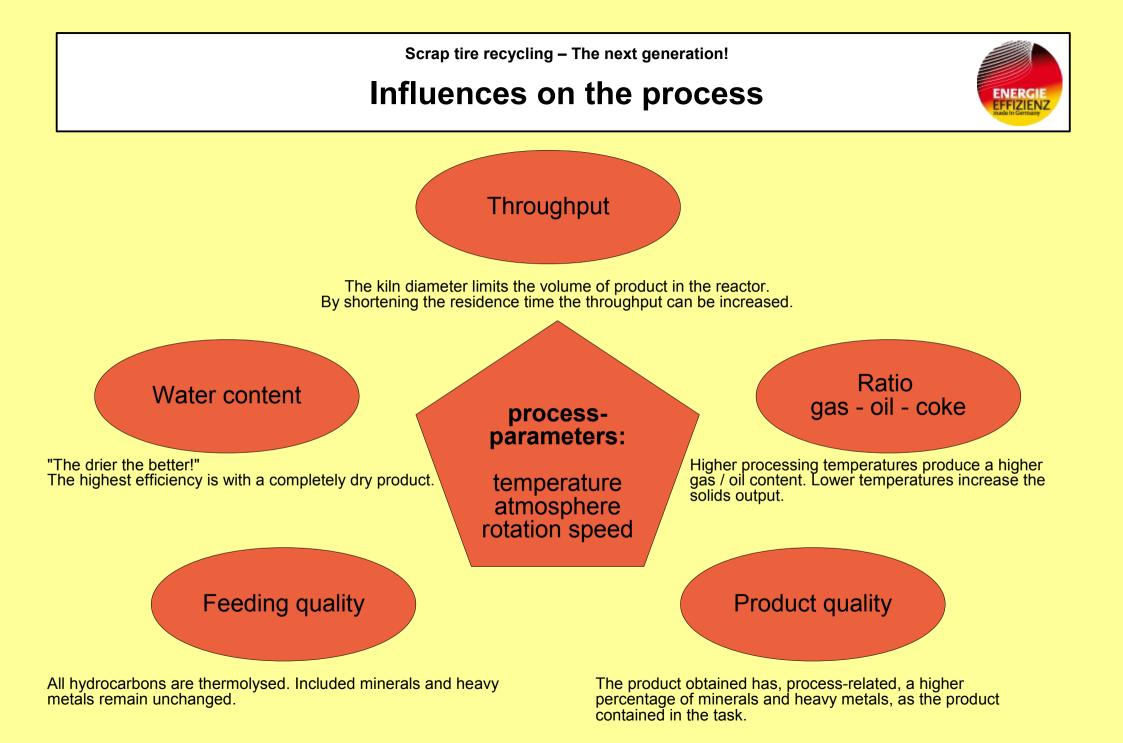

40 Desulphuring


50 Oil CHP (own power+ external peak power)

70 Wind generator / photovoltaic

Performance data MIDI

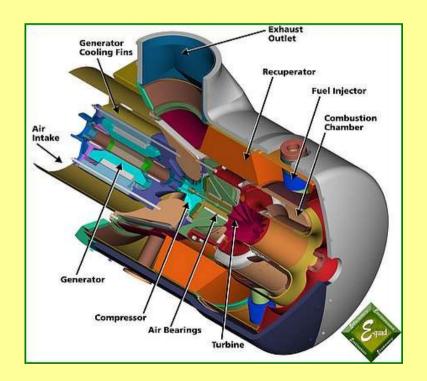



600°C	Mass-%		
Product input	scrap tires		600,00 kg/h
	Carbon 83%	40,0%	240,00 kg/h
Products output	condensate	49,0%	294,00 kg/h
	gas	11,00%	66,00 kg/h

600°C		Mass-%	MIDI-Duo
Product input	scrap tires		1.200,00 kg/h
	Carbon 83%	40,0%	480,00 kg/h
Products output	condensate	49,0%	588,00 kg/h
	gas	11,00%	132,00 kg/h

600°C		Mass-%	MIDI-Quad
Product input	scrap tires		2.400,00 kg/h
	Carbon 83%	40,0%	960,00 kg/h
Products output	condensate	49,0%	1.176,00 kg/h
	gas	11,00%	264,00 kg/h

Please note: Special customer's designs are possible!



Using of permanent gas

Due to safety reasons the permant gas must be depolluted.

In worst case this gas can be simply burnt. In standard case a power generation is much more sensefull.

The following points are advantages of this technology:

- No lubricating oils that need to be replaced regularly
- → Air bearings for wear-free, long life
- → No pistons or abrasive components
- High control range from 10 100% which allows an energy generation on demand
 High off gas temperature (280°C),
- High off gas temperature (280°C), can be used for generating steam and drying

Specification C1000 (5x C200)

- Manufacturer: Capstone
- Type: Gas turbine
- Nominal power: 5x 200 kW_{el}
- Full load speed: 61.000 rpm (Nominal speed)
- Cooling type: air
- Off-gas temperature: 280°C
- Cooling liquid: -
- Consumption ca. 300g/KW at full load ca. 300 kg/h
- electrical efectiveness ca. 33%

Off-gas from the turbine

	Heat	ting oil extra	scrap tire oil	scrap tire	scrap tire oil	ting oil extra	ting oil extra l	ig limit value
Power, el.	kW				25,0	30,0	25,0	
T-air	°C	21,0	22,1	23,1	20,7	20,6	20,5	
T-Off-gas	°C	77,2	231,6	269,0	267,6	270,6	272,4	
CO	ppm	213	29	8	11	6	6	
CO	mg/Nm ³	266	36	10	14	8	8	50
NO	ppm	21	111	104	106	21	19	
NO2	ppm	4	0	0	0	0	0	
Nox Cal.	mg/Nm ³	51	228	213	217	43	39	200
NOx	ppm	25	111	104	106	21	19	
SO2	ppm	1	98	105	115	5	4	
SO2	mg/Nm ³	3	280	300	329	14	11	50

and the second the stiller set and the set

Notes:

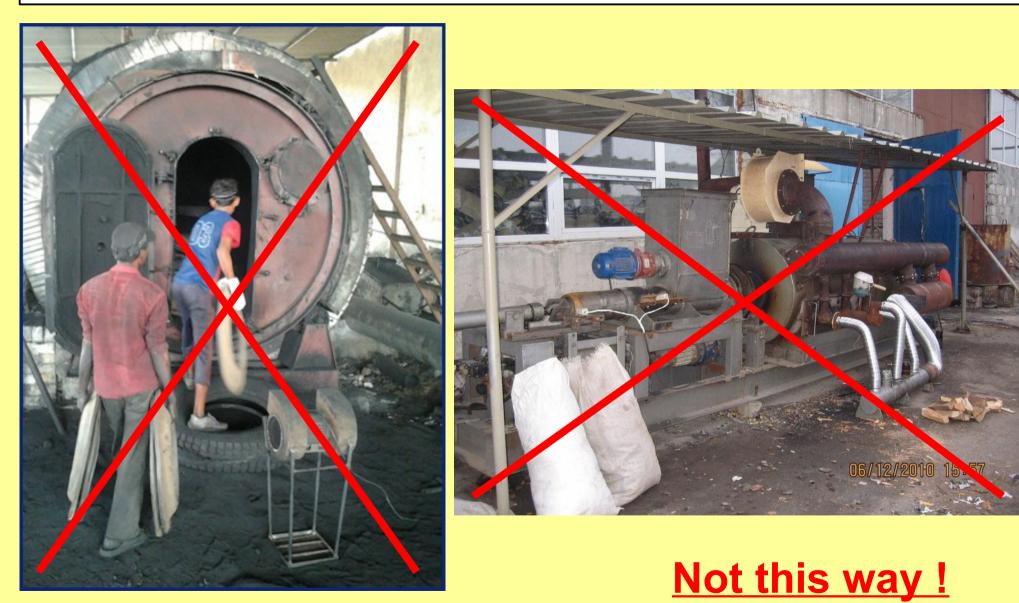
The shown values have been measured with a standard diesel turbine.

. . .

The high SO2-content results from a high sulphur content within the oil. A reduction of the oil sulphur will decrease the SO2-values.

The NOx depends on the combustion parameters and can be reduced with appropriate adjustment.

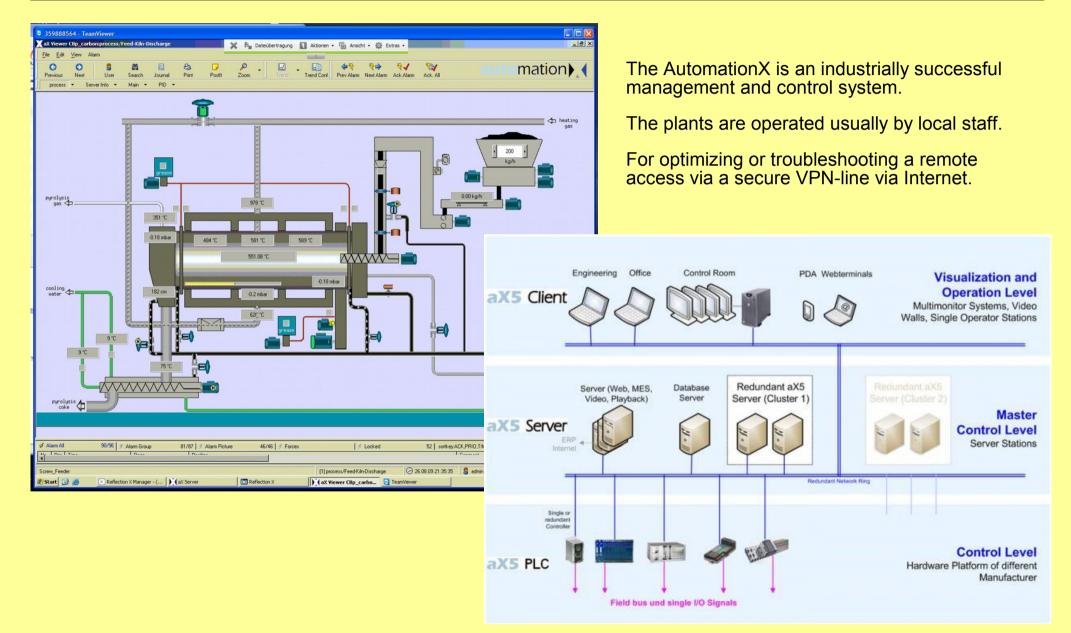
Emergency power generation



Multi-fuel engines can use condensate oils of (almost) every quality.

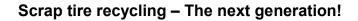
Specification MTU 837 BA 500

- Manufacturer: MTU Mercedes Benz Manufacture
- Mode of operation: Four stroke precombustion chamber with
- Total cylinder capacity: 29900 ccm
- Nominal power: 460 bis 485 kW according to DIN at 2200/ min
- Max. torque: 2206 Nm at 1750/ min
- Idle-running speed: 600 bis 630 / min (motor at operating
- Full load speed: 2200/ min (nominal speed)
- Cooling type: water circulation cooling
- Cooling liquid: 115 liter up to -20 °C frost-proof
- Engine oil pressure at operating temperature 6 bis 8 bar at 2200/ min
- Consumption 240g/KW at full load ca. 108 kg/h
- electrical effectiveness ca. 39%


A safe process?

Process control system

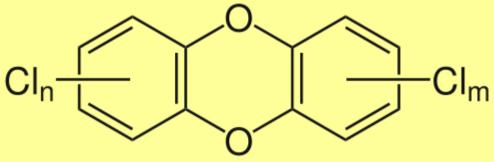
Process safety !

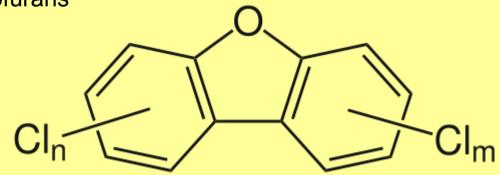

Only by using **comprehensive sensor technology** the process control system can react appropriate on possible changes and incidents.

Only by **redundancy of measurement points**, especially of the relevant measurements, according to SIL-concept, the control system receives reliable data.

Only by thorough **FME-analysis** the control system gets routine to guarantee safe handling of malfunctions.

Only by comprehensive **Log-functions** of all parameters a correct operation is traceable and the QS-system reliable.

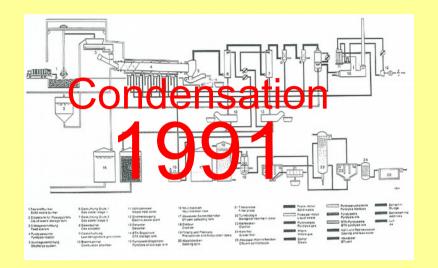

Only by **comprehensive connecting of the complex measurement results** regulation of the process is possible at all.


Prejudice: dioxines + furans

Polychlorinated dibenzodioxines

Polychlorinated dibenzofurans

Prejudice: emissions



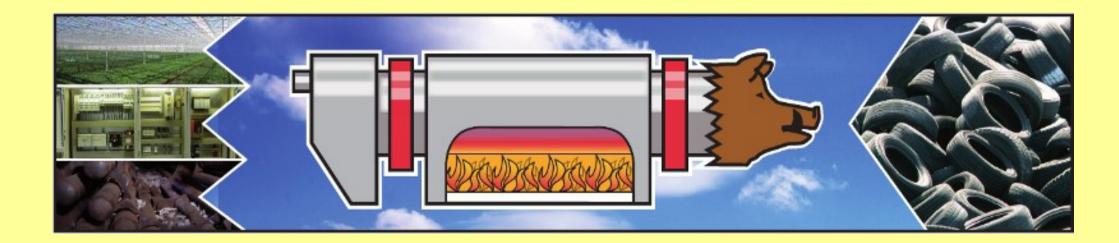
		Fine dust				
Limit value for this facility according to 17. BImSchV	Measured value MPA Burgau (LUA Bayern)	Bagatelle mass flow TA-Luft	Limit value For pellet heating	Limit value for stoves 1. BImSchV		
10 mg/m³	1,3 mg/m³	1.000.000 mg/h (1.000 m³/h * 1 g/m³)	60 mg/m³	100 mg/m³		
		Dioxine				
Limit value Daily average value for this according to17. BImSch	-	Measured value Annual average value MPA Burgau (LUA Bayern)	Technical instruct	mass flow tions on air quality ntrol		
0,1 ng/m³	(unsorte	0,0013 ng/m ³ ed waste + combustion chamb		mg/m³		
		Mercury				
Limit value Daily average value for this plant according to 17. BlmSchV		Measured value Annual average value MPA Burgau (LUA Bayern)	According to tec	mass flow hnical instructions ality control		
0,03 mg/m³ (unso		0,00089 mg/m ³ ed waste + combustion chamb) mg/h * 2,5 mg/m³)		
				Seite 31		

Prejudice: new patent

HERKO Pyrolyse GmbH. & Co. Recycling KG.						
Projekt: Altreifen-Pyrolyse	yrolyse H. P. R - Systems					
Projekt Nr.:	Detum: 31. März 1981	bearbeitet durch:	Herrmann	Blatt: 19		
7.3.2 Protect tto Kenngrössen Gesantausbeute Farbe Geruch Heizwert Brennwert Wassergehalt Dichte bei 15 °C	ische verthenis frei bezur Hu Ro	Einber Gev. kJ/kg Gev. %	Wert 43,1 tiefschurz intens: spezif: 40'161 42'406 8,6	Nachweismethoo gravimetrisch Auge Nase Kalorimeter Kalorimeter JIN 51 582		
Viskosität bei 15 Viskosität bei 20	°C °C	g/ml m Pa s m Pa s	0,937 8,42 7.09	DIN 51 757 DIN 51 562 DIN 51 562		
Viskosität bei 30	°C .	m Pa s m Pa s	6,03 5,21	DIN 51 562 DIN 51 562		
Viskosität bei 40	°C °C	m Pa s m Pa s	4,55 4,13	DIN 51 562 DIN 51 562		
Spez. Wärme bei 20 Koksrückstand nach Flammpunkt im gesc	Conradsen	kJ/kg.K Gew. %	1,96	Kalorimeter DIN 51 511		
		°C				

New:

Equal consideration of all three products:


- Solid (coke / carbon black / fertilizer)
 Condensate (chemical raw material)
- Gas

... additionally:

- Combination with re-newable energiesPossibility of power network stabilization


Thank you!

Further product applications

Mixing of the products is generally possible,

but economical not recommendable!

Tires - Ingredients

Element		Unit
Rubber	47	%
Carbon Black + fille	21,5	%
Mesh	5,5	%
Ferrum	16,5	%
Oils	9,5	%

Element		Unit
Zinc oxide	1	%
Sulphur	1,5	%
Nitrogen	0,5	%
Stearic acid	0,3	%
Halogenes	0,1	%
Copper compounds	450	mg/kg
Lead	410	mg/kg
Cobalt	250	mg/kg
Chrome	97	mg/kg
Nickel	77	mg/kg
Arsis	20	mg/kg
Cadmium	8	mg/kg
Quicksilver	0,177	mg/kg

Source: Newsletter Bavarian State office for environment June 2011

German regulations ...

Minimum distance

Scrap tires are declared as **non hazardous waste** (waste classification key 160103)

According to the 4th BImSchV such a plant is classified (in accordance with 8.1(1)a)) as: Facilities for removal or recycling of solid, liquid or gaseous materials by means of thermal treatment (pyrolsysis facilities) up to 3 t/h.

In agreement with appendix 2 distance decree "Immission relevant facilities which are not included in the distance list", valid for this type of facilitiy is : **No minimum distance**!

Requirements for sites

For such a facility (in Germany) a commercial-industrial site or a special site is required