# LILLIANAH TECHNOLOGIES CAPTURING CARBON & REVITALIZING OCEAN ECOSYSTEMS

A BUSINESS WITH GLOBAL SCALING AMBITIONS

## Benjamin Slotnick, Ph.D.

October 2022



AY DURING OT

ENERGY V

## OCEANS ARE IN TROUBLE

### CLIMATE CHANGE IS ACCELERATING

## FISHERIES ARE COLLAPSING

The ultimate challenge for our generation

Local regulators care about fisheries; climate change is less of a priority OCEAN DEAD ZONES\* ARE INTENSIFYING



Now over 400 impacted areas totaling >250,000 km2

## ALGAE MOST EFFECTIVE SOLUTION TO OCEAN CDR\*



## CAN CAPTURE THE CO2 EQUIVALENT OF

30,000 TREES PER MONTH

## EACH KILOGRAM OF MICROALGAE

- Microalgae (diatoms) are the ocean's natural filter
  - Hyper-efficient at absorbing CO<sub>2</sub> (faster than trees, no water, no land)
  - Removes harmful pollutants, e.g. runoff from industrial farming

\*National Academy of Sciences' Dec 2021 report concluded algae most effective, lowest cost, most scalable route to Ocean CDR

## ALGAE REPRODUCE EXPONENTIALLY

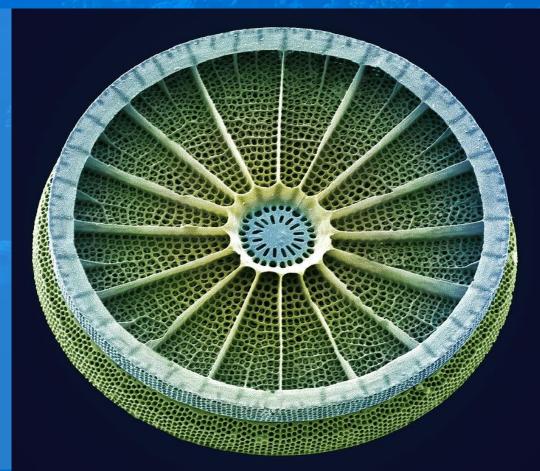
## LILLIANAH WILL REMOVE A TOTAL OF 20 BILLION TONS OF CO2 BY 2030

That is equivalent to 40% of global human-induced carbon emissions in one year!

## TWO SIMULTANEOUS BIOTECHNOLOGIES

Technology 1: Floating nutrients

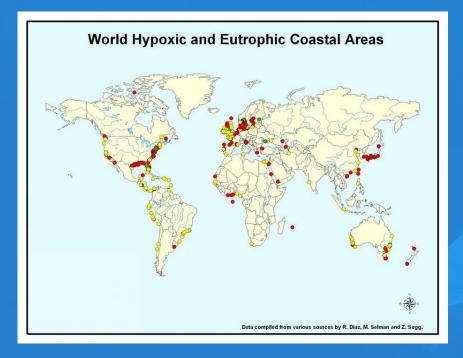
## Most micronutrients sink (unusable)


Lillianah helps micronutrients float (helps algae grow) Technology 2: Sinking Algae

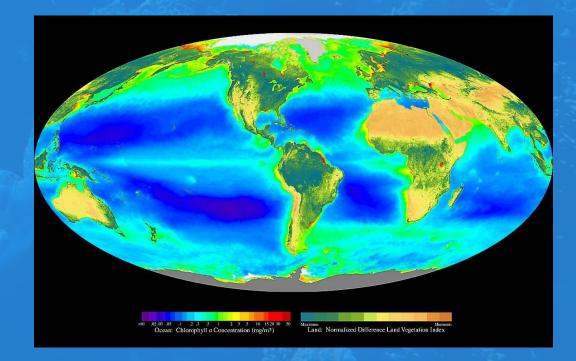
Most algae floats (carbon not removed)

Lillianah helps algae sink (carbon removed)

## **PROPRIETARY TECHNOLOGIES**


- Safely targeting, planning, creating, and controlling massive algal blooms through data science solutions
- Growth optimization by (1) natural communal response to boost/inhibit growth (2) enhancing productivity and impact through native species modification
- Automating offshore activities through ship-based bioreactor design and implementation and cryptographically validated dispersion devices
- Autonomous floating and underwater systems for measurement and verification of sequestered carbon




Pictured above: a diatom (microscopic plant in the ocean)

## BUSINESS MODEL: GENERATE & MONETIZE CARBON CREDITS

## Initial work in coastal markets



## Long term work in open oceans



## Multi-gigaton carbon removal opportunities

## Large growth potential with >400 dead zones

## GO TO MARKET

## Three phase plan to unlock algae-based business models



Phase 1 (start small): Solving acute local problems – revitalizing dead zones and fisheries



Phase 2 (build off local success): Dedicated carbon capture projects in coastal waters



Phase 3 (global scale): Carbon capture projects in the open ocean, enabled by Lillianah and executed by partners

## TIMELINE

| For Project 1 (coastal):<br>Obtain state regulatory<br>approval. Complete<br>recon and pilot work<br>Q2 2022 | Scouting & Initial<br>approval for Coastal<br>Projects 2 & 3<br>Q4 2022 / 2023 | Kick off open ocean carbon<br>removal work (R&D &<br>regulatory approval)<br>Q1 2024                               | Coastal projects: Remove 10 million<br>metric tons of carbon (or more) annually.<br>Open Ocean projects: Remove hundreds<br>of millions of tons to billions of tons of<br>carbon annually<br>2025 and beyond |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Q4 2022 / Q1 2023<br>Hire 7 personnel:<br>-3 c-suite roles<br>-4 Project 1 roles                             | For Project<br>post-revenue<br>via scale<br>For Project                        | Q2 2023<br>1 (coastal): Reach<br>e and commercialize<br>ed deployment.<br>2 (coastal): Obtain<br>ulatory approval. | By end-2024<br>Exceed \$15-20 million<br>of annual carbon sales                                                                                                                                              |  |  |  |

## OUR CUSTOMERS

Any corporation looking to offset their emissions

- **Total addressable market** is extensive as any corporation can take part in purchasing carbon offsets
  - 25 million companies \* \$20000 USD = \$500 billion USD
- Serviceable addressable market today includes the corporations that have already been proactive with carbon (<1% of the total market potential)
  - 250,000 companies \* \$20000 USD = \$5 billion USD
- Serviceable obtainable market includes 1-5 corporations that have interest in pre-sales of carbon credits today
  - 5 companies \* \$2 million = \$10 million USD

Future customers: Maritime operators, fishing boats, energy companies (oil & gas), all socially responsible companies



## TIME OF CAPTURE FROM RELEASE

Daily releases during commercial stage

- **Growth rate** doubles microalgae concentration each day under stable bloom conditions
- Starting one day after each release and lasting up to 1 month, microalgae sink and capture carbon
- Cumulative carbon removal takes place with each successive day since a new release is carried out every day
  - Carbon removal takes place from day 1 to up to 30 days after last release

## CARBON PERMANENCE

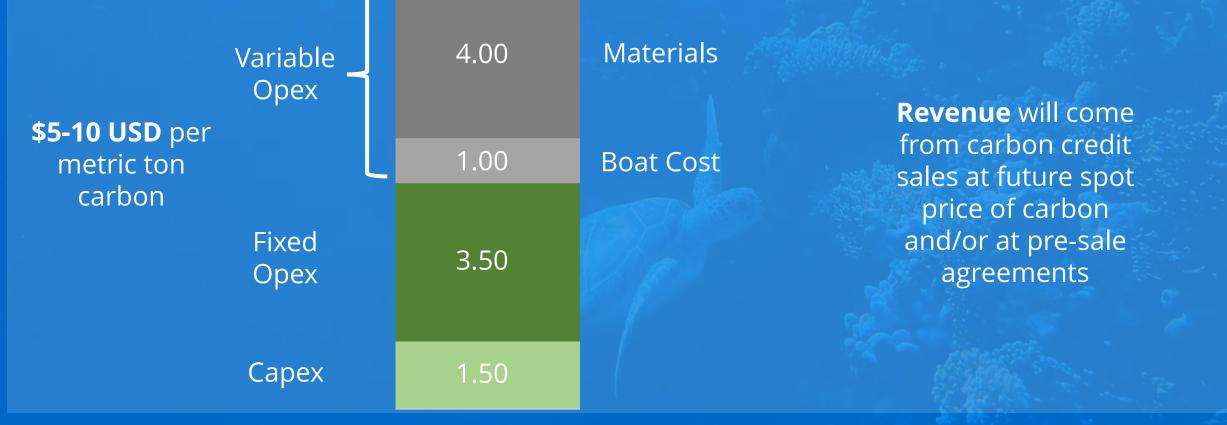
Nearshore marine environments provide high quality carbon removal (>1000 years)

- Account for >25% of carbon even though nearshore represents just 0.2% of oceans
- **Removes** significant fraction of carbon humans release into atmosphere
- Increased primary productivity from increased nutrient supply and carbon burial

Focused delivery of carbon in nearshore marine systems increases carbon storage

- Higher sedimentation rates increases carbon preservation
- Smaller spatial extent of hypoxic dead zones minimize carbon emissions
- Limit carbon accounting to water depths deeper than double wave-base (>20 ft)

## VALIDATION AND CERTIFICATION


## Internal data collection

- Data Buoys in surface waters
  - Track blooms quantify bloom size and chlorophyll amount including overall carbon drawdown
  - Confirm desired species and no negative consequences
- Underwater cameras within water column
  - Continually monitor particles sinking (size and composition)
- Sediment Traps at bottom of ocean
  - Constrain total carbon delivery
- Independent Measurement, Reporting, & Validation (MRV) through third party vendors (e.g., carbon brokers / auditors, universities, MRV companies)
- Maintain database for continued monitoring and verification



Sediment Traps

## Cost Breakdown

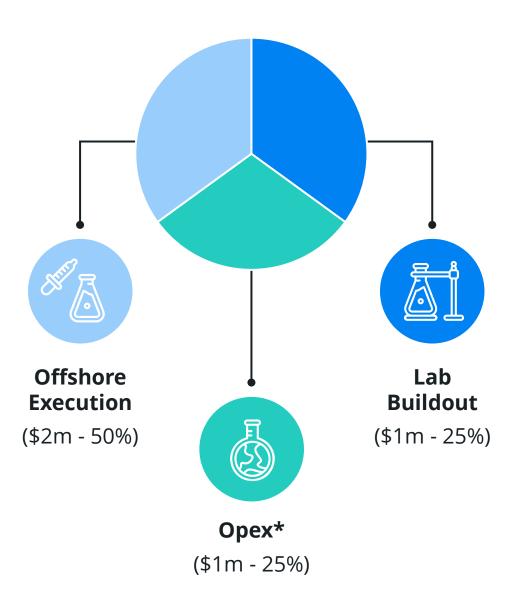


## FINANCIAL PROJECTIONS

|             |                               |                          | Revenue |      |      |      |      |      |
|-------------|-------------------------------|--------------------------|---------|------|------|------|------|------|
|             |                               | \$450,000,000 —          |         |      |      |      |      |      |
|             |                               | \$400,000,000 —          |         |      |      |      |      |      |
| <b>&gt;</b> | 2022/2023 sales pipeline \$4m | \$350,000,000 —          |         |      |      |      |      | _    |
| <b>&gt;</b> | Multi-year pre-sales          | \$300,000,000 —          |         |      |      |      |      | _    |
|             |                               | \$250,000,000 —          |         |      |      |      |      | _    |
| >           | 90%+ margins                  | \$200,000,000 —          |         |      |      |      | -    |      |
|             |                               | \$1 <i>5</i> 0,000,000 — |         |      |      |      | _    |      |
| <b>&gt;</b> | Global scaling potential      | \$100,000,000 —          |         |      |      |      | _    | _    |
|             |                               | \$50,000,000 —           |         |      |      |      | _    |      |
|             |                               | \$0                      |         |      |      |      |      |      |
|             |                               | <b>\$</b>                | 2022    | 2023 | 2024 | 2025 | 2026 | 2027 |

## \*This assumes viable carbon credit market established by 2025

## OUR CARBON CAPTURE PEERS


|                               | Cost         | Time to 1 Gt+                              | Land Use                      |  |
|-------------------------------|--------------|--------------------------------------------|-------------------------------|--|
| AFFORESTATION<br>(TREES)      | \$5-50/ton   | >10 years                                  | Size of Australia             |  |
| DIRECT AIR CAPTURE<br>(DAC)   | >\$100/ton   | >10 years (pending<br>energy breakthrough) | Insignificant                 |  |
| OCEAN<br>ALKALINIZATION       | \$40-260/ton | >10 years                                  | 1 ton mining per 1 ton<br>CO2 |  |
| SEAWEED/KELP<br>(MACRO ALGAE) | >\$250/ton   | >10 years                                  | Negative                      |  |
| LILLIANAH<br>(MICRO ALGAE)    | \$5-50/ton   | 3-5 years                                  | Negative                      |  |

## **USE OF FUNDS**

# \$4,000,000

Funds extend through Lillianah's first commercial season for Project 1

• Enable post-revenue conditions



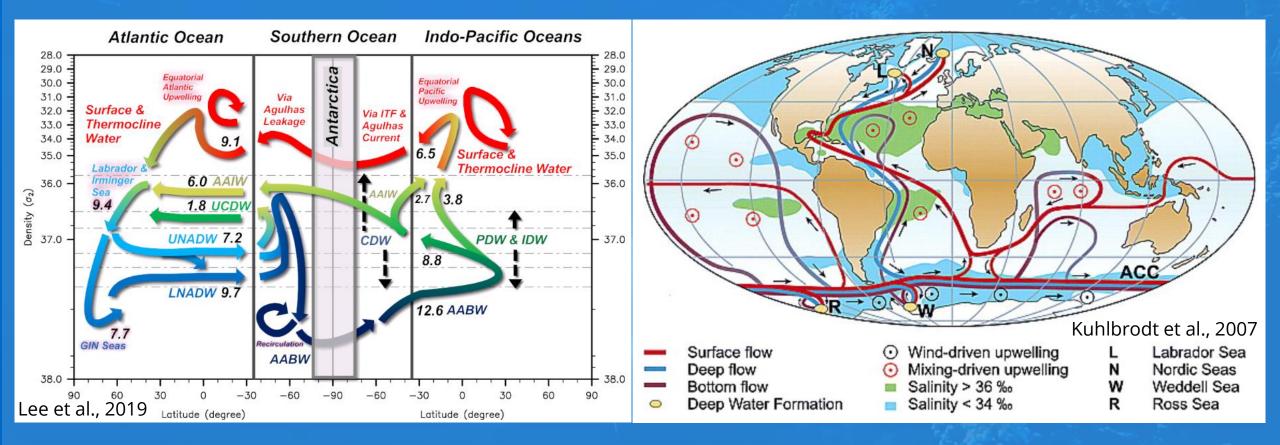
\*Patent pending

\*Includes lab opex, salaries, SG&A, and legal/IP fees

# LILLIANAH TECHNOLOGIES CAPTURING CARBON & REVITALIZING OCEAN ECOSYSTEMS

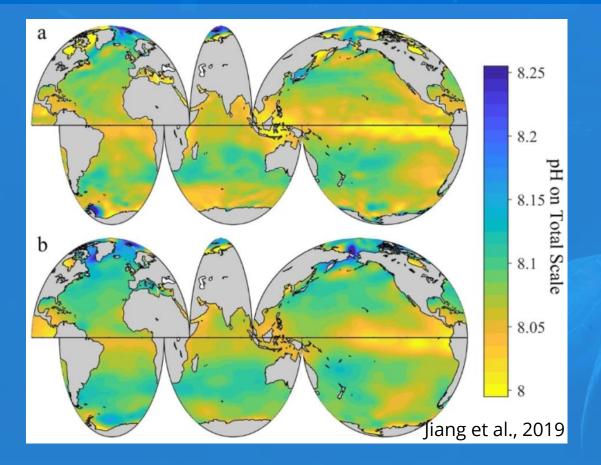
A BUSINESS WITH GLOBAL SCALING AMBITIONS

## Benjamin Slotnick, Ph.D.


October 2022

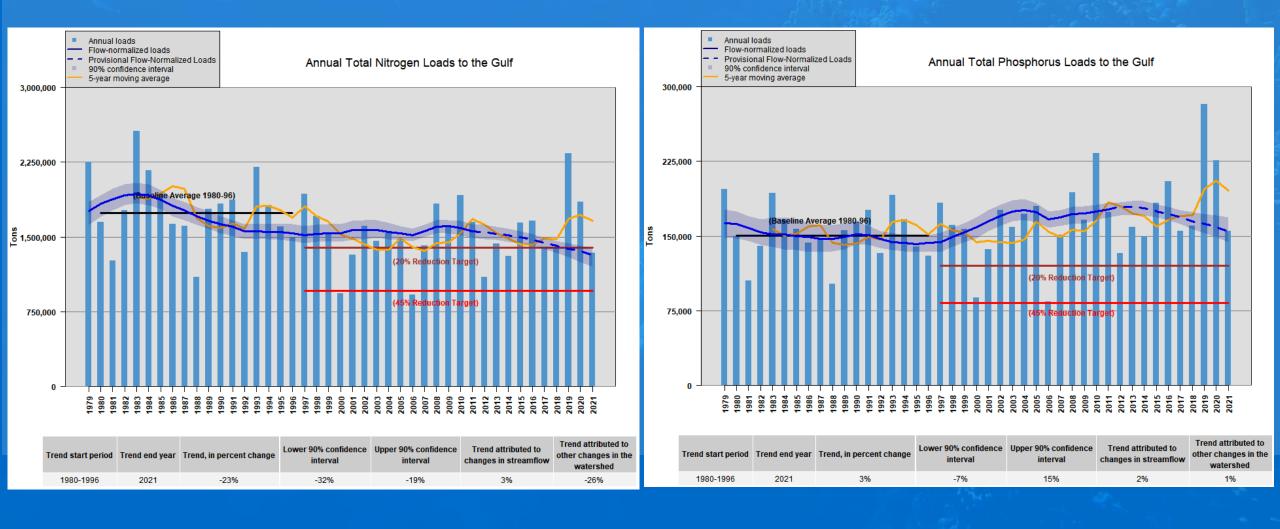


AY DURING OT


ENERGY V

## ADDITIONAL BACKGROUNG (KEY FACTORS: Meridional Overturning)




Target preferred shipping lanes and/or coastal regions with beneficial currents movement

## ADDITIONAL BACKGROUND (KEY FACTORS: Surface Water pH)



pH of surface waters throughout our oceans impact the rate of carbon dioxide uptake from the atmosphere

## Trends in annual water-quality loads to the Gulf of Mexico (Published by USGS)

