ValuPAP™ Paper Mill Site

Source : Paper Mill waste pulper and cellulosic fiber Mission : On Site RDF Preparation and Energy Production Year : 2020

	Caracteristics			30.
Throughput stage 1	Preparation 15000 to/y RDF	15 m ³ /h	45% dm	
Throughput stage 2	Energy PRODUCTION 38 GW to/y	8 to/h	18 MJ/kg	

The solutions :

Revolution[™] dewatering Paddle defiber[™] Synecom[™] gasifier Waste heat Recovery Steam production

ValuPAP[™]

Copyright applies. Reproduction upon prior autorisation only

ed@green-bean.ch

Paul JANSEN +49 1512 5393 765

ValuPAP™ Paper Mill Site

Project objective : We use pulper waste from recycled paper process to produce steam on-site. This is to reduce the cost of supply of natural gas, as well as to reduce the cost off-site waste disposal.

Context: Over 500 paper mill sites all over the world generate an average of 15000 tons of waste per site.

Scope of the work : During the pulping process of recycled paper, industrial waste is generated (such as plastics and cellulose). The waste that is generated is usually transported off-site and either incinerated or put in landfills. On the quest for a greener economy and to reduce overall costs, paper mill groups are looking for a way to produce energy on-site (e.g. steam) by using the generated waste as a fuel source.

Engineering : By providing up-to-date combined technologies at the first stage of RDF preparation and Stage 2 gasification, we ensure both technical and commercial advantages (ROI is under 7 years on waste volume on-site). ValuPAP[™] is a turnkey engineering solution that converts waste into energy. We combine technical know-how with effective BOOT financial engineering.

Environmental Impact : Each plant will reduce their consumption of natural gas by 12 Mm3/year if the the waste generated is equal to 15000 tonnes/year, by converting this waste into energy on-site. This is the equivalent of the natural gas consumption of 11,000 average families over a year. This is as much as an Olympic swimming pool which contains on average 3000 M3/y.

ValuPAP[™]

Paper Mill : Plant Description Pyrolysis of Pulper with input MP of 1000 kg/h					
Pulper LHV considered					
Input STAGE 1 : RDF Preparation 15000 to/y					
	TION the	8.000			
Mass Elow Pate	t/d	24			
Mass Flow Itale	ka/b	1.000			
Working hours per Vear	b/v	8.000			
Inlet Humidity	%	10%			
LHV (Dry basis)	MJ/ka	10,0			
Thermal Energy	MW th	4,5			
Mass Flow Rate to Pyrolysis	kg/h	1000			
Pyrolysis Output					
Gas	%	61%			
LHV Gas	MJ/kg	20,0			
Oil	%	32%			
LHV Oil	MJ/kg	17,5			
Syngas	%	93%			
LHV Syngas	MJ/kg	17,8			
Char	%	7%			
LHV Char	MJ/kg	17,0			
Boiler Production					
Fuel burned		Syngas			
Thermal Energy Aviable	MVV_th	5,02			
Boiler efficiency	%	93%			
Thermal Energy Product from fuel bur	MVV_th	4,/			
Tatal Available Thermal Energy Recovery		/0			
Total Available Thermal Energy	MVV_th	4,7			
Saturated Steam Production					
Iniet Water Temperature	hara	80,0			
Outlet Steam Temperature		1 227 E			
Outlet Steam Pressure	bara	237,5			
m Steam Produced	t/h	6.9			
Thormal Energy Dreduced in the Ve	38.0				
Thermal Energy Produced in the Ye	30,0				

ValuPAP™

[™] Copyright applies. Reproduction upon prior autorisation only

ed@green-bean.ch