

ER.

Meet Clean Tech Aviation

Retrofits the existing General Aviation aircraft engines and Transport aircraft Auxiliary Power Units ** (APU) and design using **LNG as transition energy towards zero emissions**.

Develops a **LNG* Fuel tank** on use and storage of LNG with a gasifier use of LNG and in the 2th stage a **cryogenic energy** injection combined with the combustion energy *(Bio Natural Gas).

Reduces in phase 1 **CO2 emissions**

(footprint) with 25% while simultaneously reducing fuel price costs (OPEX) with 35% and in phase 2 reduce emissions to 88% using BIO LNG.

CTA foresees that the 1st operational step for business aviation is the use of LNG as alternative fuel in the aircraft Auxiliary Power Units (APU).

Because the unit has less essential properties than the main engines of an aircraft and is therefore more suitable for modification, before storing and using LNG as main fuel for the whole aircraft.

Problem

- Worldwide Aviation industry produces 8 Gigaton Carbon dioxide per year
- The Oceans absorbs 6GT per year
- Cumulative we build 2GT per year and each CO₂ molucule has a lifetime of 100 years
- Yr 2000 Worlds Greenhouse Gas emissions:
- Is equivalent to 5,5Tons CO₂e/yr/person
- The Ozon layers are dangerously affected

Direct LNG fuel injection using cryogenic energy

Innovation with direct LNG injection in combustion chamber as radical innovation process:

• 35% less costs

• 98% less NOX

• 25% to 88% CO2 reduction

- 100% lead
 & zero SOX
- Less noise

Solution

Liquid Natural Gas of – 162 degree celcius in an aviation fuel tank stored & gassified injected in the engine.

Scientific support program with TU Braunschweig & Hanze, DnvGL, NLR-DLR & Lycoming engines USA.

LNG fuel tank design & development with Composite material.

Solution

Direct LNG fuel injection on the APU using cryogenic energy on an EGTS

Solution

CTA has:

 developed the technical solution for the aviation engines and fuel tanks using LNG and its cryogenic energy solution

established a partner consortium covering the total value and logistic value chain

backed up by the manufacturing industry controlling
 60% of the market

• Natural gas:

- available on Earth with a wide range and availability, making it less sensitive to political influences and price increases
- -available as low and high calorific gas
- -As a fossil fuel, it is 35% cleaner compared to current fossil fuels
- -52c per kg is 75% calorific value of the fossil fuel in terms of energy volume, therefore a comparative cost price of +/- 70 eurocent / kg.
- -difficult form of storage and low temperature
- of 162 degrees °C, however at ambient pressure.

Business model

Product / Service Definition

STC License: ca.\$35.000

Target market

там €10.102 M

(Based on CTA EU markets estimates0,5% market penetration and on 72license partners & 973 retrofitted engines)

Aimed Market Share

4 -5 % Based on BA & GA & Turboprops

Next Markets

Military Aviation 3-5 years

Transport Aviation

Go to Market

Focus on existing aircrafts using the fossil fuel supply/ engine / aircraft industry as partners CTA GmbH is a base platform together with CTA Ruber Acia Inspirations and the USA partners. Lycoming has committed to invest 3.5 Mio in the launch on the USA market after certification EASA + FAA

For large aviation as an R&D unit link to Honeywell and Boeing / Airbus with the Hybrid APU solution

Use the existing communication channels from the aircraft engine manufacturers to the MRO's (Maintenance and Repair Organizations) and FTO's (Flight Training Organizations)

CTA com own toget then differ (411.0

CTA will realize the composite tanks from its own development together with its partners and then set up its own factory for all different GA aircraft types (411.000 GA aircraft worldwide and 122.000 in Europe).

🗧 R&D Timeline

TD = Technical Design / FC = Functional Design / GA = General Aviation / APU = Auxillary Power Unit / LNG = Liquid Natural Gas

Business Case (1)

Capital Asset Pricing Model (CAPM) for professional flight schools and business owners

Aircraft owner: savings overview

Remarks

Capital Asset Pricing Model (CAPM)

for professional flight schools and business owners

ROI with CNG/LNG fuel price € 1,45 /ltr and € 1,55 cost reduction

■ Minimum 400 hours ■ Average 600 hours ■ Maximum 800 hours

400 hrs/year private owner

600 hrs/year shared owners

800 hrs/year flight schools

Business Case (2)

Cost of Retrofitting: ~ € 30.000 – € 45.000
 (including parts, retrofit, training and engine Supplemental Type certificate (STS) license)

• Model of reduced fuel price by € 1,55c from 3.00 euro per liter to € 1,45 per kg

 Payback period for retrofitting is < 1 year and thereafter saving the operator 50 % on its OPEX fuel costs per aircraft (50 % x €90.000 = € 45.000)

• OPEX costs owner are being reduced due to less wear and tear on critical engine components like valves and cylinders by use of cleaner CNG/LNG fuel

• Emission penalties will lead to additional incentives for switch to natural gas engine solutions

• NPV of 21% value reduction incorporated

Competition

Now 2 fuels are in use:

1. Avgas

100 and 130 Low lead: an upgraded and aviation-grade automotive fuel type.

2. Kerosene

an aviation-refined and upgraded diesel fuel.

Other competitors / initiatives / fuels:

Compressed Natural Gas initiative

started in the USA in 2013 with application of CNG in an external attached fuel tank on a Huskey GA aircraft. The engine on the aircraft used was a Lycoming I O – 360. Aviation legislation requires a completely redesigned airworthiness test for a solution that changes the shape of an aircraft. Covers an average of 1000 hours of test flying, which negated the business case for this startup.

Diesel Fuel

Diesel engines have been placed in limited numbers of GA aircrafts. However, diesel is cheaper, but not cleaner.

Ethanol fuels

application in Embraer General Aviation spray aircraft used. Cleaner in terms of emissions and cheaper, however, due to serious freezing phenomena when using this fuel in temperatures +5 - 15 degrees and at a height not safely applicable > 1000 m

Gas to Liquid (GTL)

(Fossil kerosene blended with 50% synthetic GTL allowed) but not cheaper

Power to Liquid (PTL)

Extraction of CO₂ out of free air requires enormous electrical powerplant for production makes PTL 6 times more expensive than fossil kerosene

Sustainable Aviation Fuel (SAF)

Complex feedstock supply lines and is 3 times more expensive

Competition Matrix

Standard and alternative fuels (the heat value of each fuel is the amount of heat released during its combustion and is as such a comparison of energy power)	Heat Value in MJ/KG	Risk aspects and drawbacks	Net Price per L/kg	World wide available	Emission factor % versus fossil fuels
Aviation Gasoline (Avgas) containing Led (100 LL and 130LL)	44-46	Global reservoirs lifetime limited and ongoing market prsessures & huge negative climate impacts	€ 2,4	V	Basis
Automotive fuel (Mogas)	44-46	Only approved on recreational light aircraft engines (Rotax) and below 3000 m	€1,5	limited	Basis
Aviation Kerosine	42-46	Global reservoirs lifetime limited and ongoing market pressures & growing negative climate impacts	€ 1,5	V	Basis
Battery power Ethanol	- 28	Weight penalty & Range limits Freezing at altitude	- €1,5	No Brazil	zero 70%
Methanol	22,7	Freezing & extreem toxic fumes	€ 1,5	No	70%
Sustainable Aviation Fuel (SAF)	42-46	Complex and costly feedstock supply chains	€ 3,0	No	80%
Gas To liquid (GTL) Fischer Tropsch	42-46%	Complex and costly feedstock supply chains	€4,0	limited	80%
Power to Liquid (PTL) extracting CO2 out of the free air and manufactor back to fuel	42-46%	Expensive and complex production plant and requires enormous electricity	€6,0	No	zero
Compresed Natural Gas (CNG)	42-55	High pressure tank of 300-700 Bar unusable is shape and altitude effects	€1,2	V	75%
Liquid Natural Gas (LNG) (contains 600x the volume of CNG)	42-55	fuel storage requires insulation materials due to minus 162 degree temp of LNG	€ 0,5	v	75%
Bio LNG	42-55		€ 1,0	limited	12%
Hydrogen gas (Grey)	120-142	only 50% efficient in combustion engines	€ 4,0	limited	zero
Hydrogen particles (Grey)	120-142	energy content 90% of kerosine and then ideal for hydrofuelcel to electricity	€4,0	No	zero

Timeline (2)

Partners

Status

- In partner contract
- Under final partner contract development
- Targeted partner
- Grants used

Investorready Eura AG- Germany Ruber Acia Venturelab RVO GasUnie GasTerra	Advisors	R&D partners	Clean Tech Aviation BV Hanze University NLR Lycoming Engines USA Textron Aviation USA IFAS University DLR DnvGL Torrgas Clean Tech Aviation GmbH
Solid Hydro Re.Gen. Consortia Cooperation Holthausen	Under Development	Targeted potential partners	Honeywell Boeing Saffran KLM Lufthansa Nayak.Aero Aerodata.AG
Aviation Inspirations H > 91%	Founding Fathers Investors	Grants	SNN €502K Niedersachsen Aviation Nbank €1 Mio RVO-WBSO – €600k
Xegasus Aviation Investments > 9%			SNN MIT research - €75k Gasunie – €90k Gasterra – €90k Small Scale LNG – €200k

🗧 CTA Project Management team

CTA Non-Executive Boardmember

Director Airport Teuge & Twente M. de Groot

CTO & Statutory Director with MBA background

in stby mode

PHD Student

Carolina Maria Orsini

Engineering & Project Manager Aircraft engineer MSc in Aeronautical and BSc in Electrical / Electronics T. Rodriguez

Co -Owner CTA /and future CEO Investor Xegasus Aviation investment company / chemical background **Eric Tierie**

CTA Non-Executive Boardmember Former Royal Dutch Air Force Chief of Staff LT General bd A. Schnittger

Owner WBSO consulting office

Owner CTA Investor AIH BV PE CEO – COO/testpilot CTA BV/ GmbH B.W.A. Cappelle

- **Compliance manager** with H2O background
- In Standby mode

E Donk

Turbine & Piston licenced engineer

in Stby Mode

СМО

H. Helmus

Engine testlab operator / Copilot

H. Ten Voorde

Investment Proposal

Preference for a mandatory convertible loan of €500.000

Mandatory conversion at 30-06-2022 or at >1 mio round

8 % interest to be converted at conversion date

25 % discount

Minimum ticket: €50.000

Direct investment in shares is possible on request

Entrepreneur already invested €500K in company

50% financial investment, 50% hardware investment