

THE TEAM

lan Hamilton CEO & President

B.S. Engineering, Materials Science,
Purdue University
M.S. Nuclear Engineering,
Purdue University
Forbes 30 under 30

Scott Noble CFO & Treasurer

B.S. Accounting, IWU
MBA, University of Notre Dame
Experience: Large tech Strategy,
tech buy side M&A (Autodesk),
startups, and startup finance

Contractors and future FTEs

Kazuaki Yazawa, Ph.D.

Purdue University
Thermal power generation
Experience: Thermal component integration design (SONY)

John Hasse, Ph.D.

Mechanical Engineer
BS Engineering Physics & Mechanical Engineering, Kettering University
MS Mechanical Engineering, University of Notre Dame
Ph.D Mechanical Engineering, University of Notre Dame
Thesis: Thermionic energy converters

Seiji Thielk

Manufacturing Engineer BS Materials Science, University of Washington

Board of Directors & Advisors

Scott Baxter

Chair Board of Directors, SEED Investor Seat Former product development executive Roche, Aptiv (Delphi), Thomson (Techicolor), and Allegion

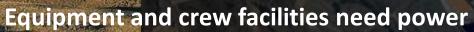
Georges Sassine

Board of Directors, Independent Former executive at GE Power, Distributed Power, Energy Systems Techstars Managing Director

James Barkley, JD

Board Observer & Secretary Former General Counsel Simon Property Group (NYSE: SPG) Multiple boards, M&A, compliance

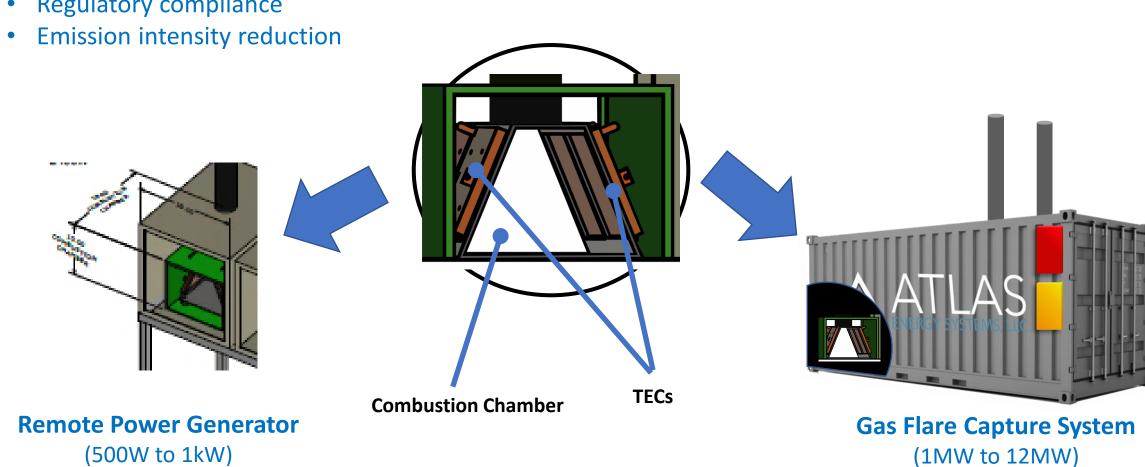
Technical Advisors


Research PhDs & Engineers (Non-disclosable)

PROBLEMS

Flares which emit methane (CH₄ is 25X CO₂)

Solution –Thermionic Energy Converters(TECs)


Devices which convert high grade heat into electricity

Sample prototype

GTM Applications – Oil & Gas

- **Production efficiency**
- Regulatory compliance

Market Size – O&G Go-To-Market

- O&G Remote Power; \$4.8B
- O&G Flare capture systems; \$11B

- Follow-on markets: \$250B+
 - Natural gas topping cycle & co-generation
 - Industrial heat exchange
 - Commercial and residential backup power
 - Concentrated solar
 - Advanced nuclear power

Competitors – 0&G Generators

O&G (Entry Market) Remote Power Generation Options					
Requirements / Pain points	Atlas Thermionic	Thermoelectric (Gentherm)	Stirling engine (Qnergy)	Nat'l Gas, Diesel, Battery+Solar	Grid Power
Field proven	Sept/Oct 2020	NO – fail with temp cycles and overheating	YES	YES – where applicable	YES – where applicable
Low maintenance	YES	NO – sensitivity to operating conditions requires maintenance	YES & NO (contains moving parts)	NO – complex system and/or refueling	YES – if available
Wide operating condition variables	YES	NO – sensitive fuel input variability; cooldown and overheat cycles	YES	Limited	YES
Remote locatable	YES	YES	YES	Limited	NO – cost of build out
Multiple fuel sources	YES – agnostic to heat source	YES	YES	Single – per system	YES (N/A) – centralized
Power turndown	YES – immune to heat buildup	NO - Requires active power draw flow controller due to internal heat buildup	NO	Requires regulator or battery systems for excess draw	YES
Favorable cost	YES	NO	NO	Varies – dependent on fuel source, existing infrastructure, remote location	NO – infrastructure build- out required
Reliability / Redundancy	YES	NO – not economically viable	YES	Limited – entire redundant systems required	YES
Power density / low footprint	YES	NO	YES	Limited	YES
Improves energy use sustainability	YES	YES	YES	NO	NO

Business Model

Sell TECs to OEMs priced by watt

Price: Est. \$10 - \$25 per watt

Margin target: ~50% at low volumes. ~85% at high volumes.

Follow-on markets

Multiple follow-on applications

IP & Milestones

Granted Patent

Nuclear thermionics and general thermionic materials

Patent Pending

Thermionic materials and electrode configurations

Provisional Patent Application

Core thermionic converter designs with novel materials, manufacturing processes, and operation

Expect 5 to 7 patent grants

Concept formulation

Design MVP #1 2019

Bench build MVP #1
May/June 2020

Demo generator installation

July/August 2020

Ask

Raise: \$1.1M @ pre-money \$4M valuation

Preferred stock Series SEED term Summary:

- Tiered annual cumulative dividend
 - \$1 to \$558k 9% Closed Dec. 2019
 - \$559k to \$900k 8%
 - \$901k to \$1.1M 7%
- 1 Board Director for Series SEED investors
- Executed term sheet available for review
- Lead: Vision ech (IN); CO: Lateral Capital (FL),
 West Suburban Angles (IL)
- SEED2 commitments:
 - VisionTech \$220k+
 - Tamiami III (FL) amount pending

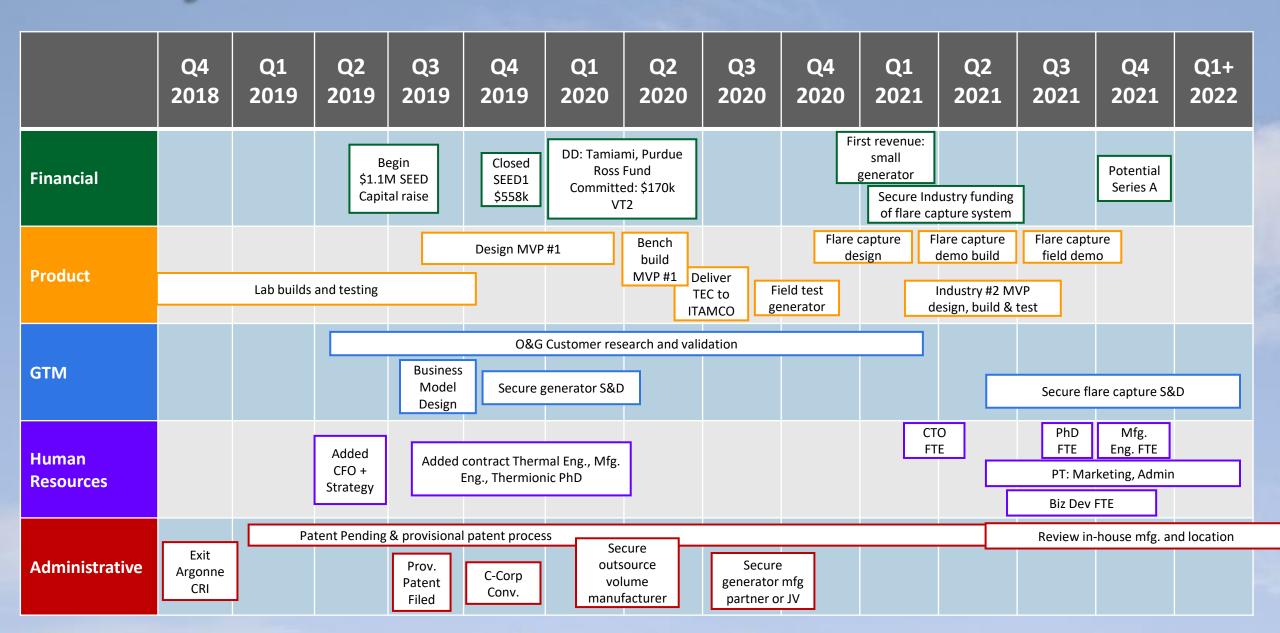
Series SEED Budget

- Mfg. eng, tooling, COGS, 1st MVP short run
- COGS for first commercial volume runs
- Management
- Engineering, Business Development
- R&D, engineering, testing, 2nd device design

Financial Summary

Financial Milestones

- Breakeven by Q4 2021
 - Self funded growth by Q2 2022
- SEED funding enables viability
 - Series A round if Atlas chooses to manufacture flare capture systems without an OEM partner
- Exit Potential 2023+
 - O&G Large integrated, Major/Mid Major
 - Or IPO 2025+



Appendix

History & Milestones

Appendix: Exit Opportunities

Financial: ~\$180M exit around 2024; Integrated Energy or O&G Mjr./Mid Mjr.

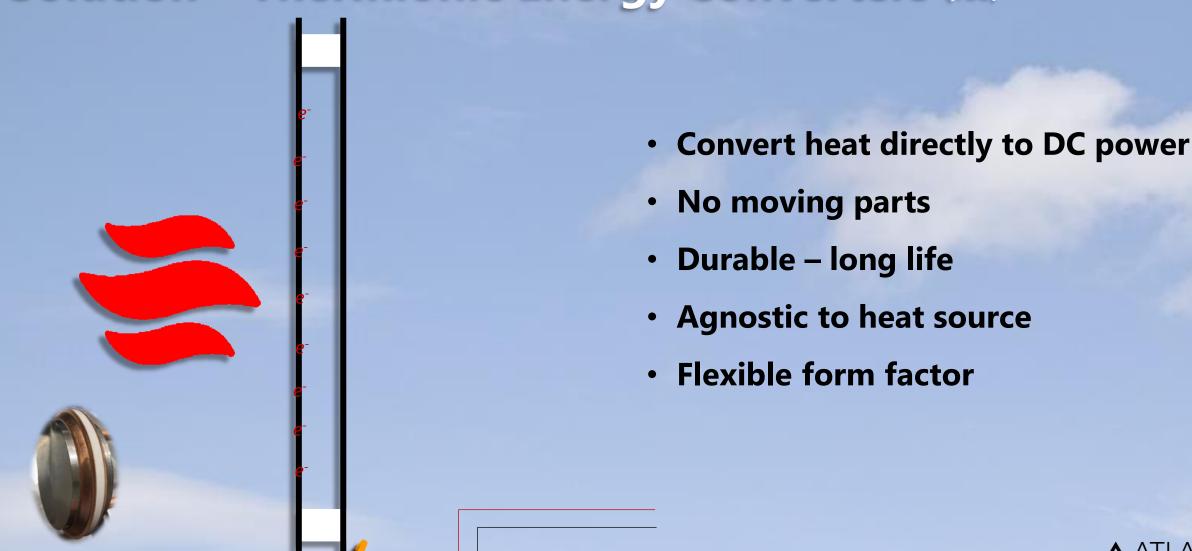
IMAP 2018 report estimates valuation at ~12.1x EV/EBITDA

Strategic: ~\$1B+ exit around 2024; Integrated global energy company

Based on early discussion with potential acquirer and industry experts due to flare gas methane reduction.

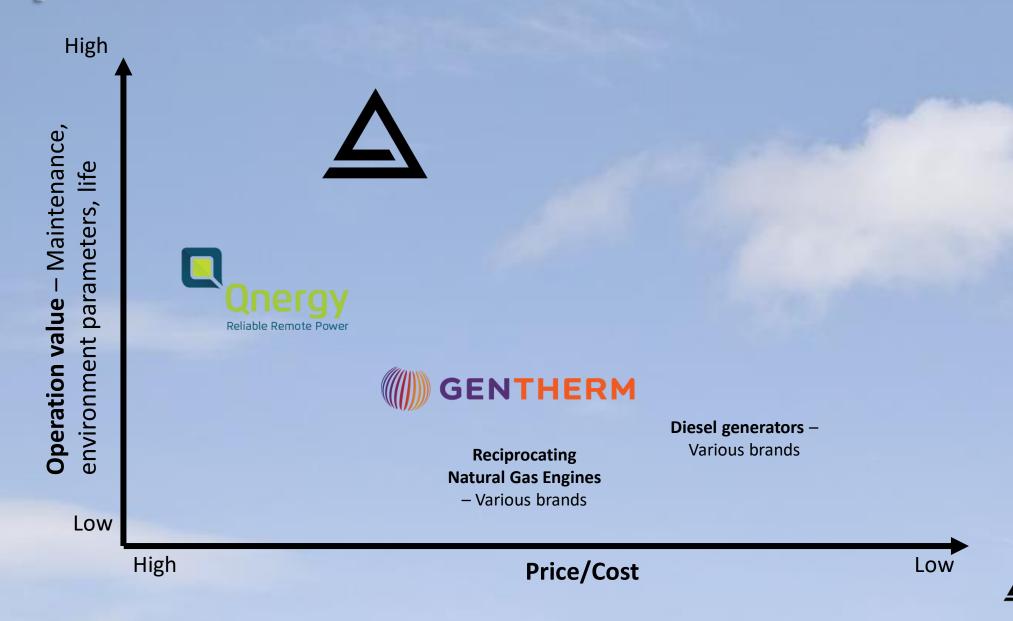
REPSOL

~2026 IPO

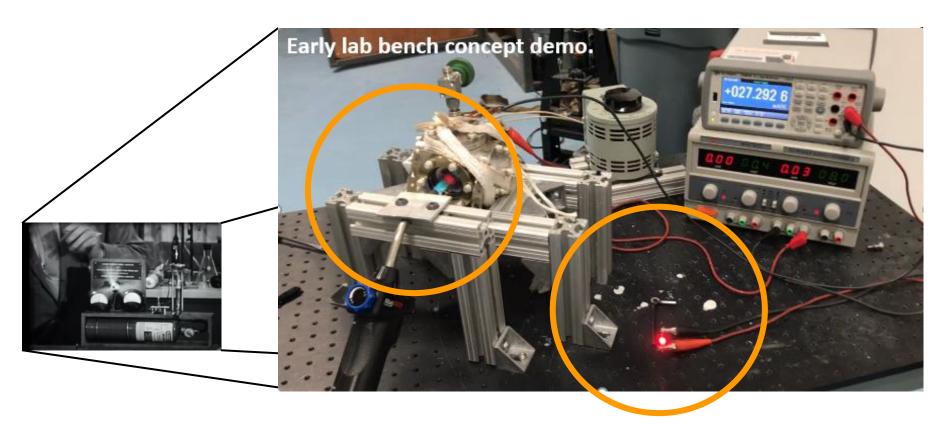


Appendix: Solution – Thermionic Energy Converters (TEC)

Sample design



Competitors – Thermionic Converters


Technology & Manufacturing Readiness MODERN ELECTRON

Competitors – 0&G Generators

Demo –Thermionic Energy Converters

Atlas materials, design, and manufacturing IP enables viability.

First known company to replicate early attempts at commercialization.