

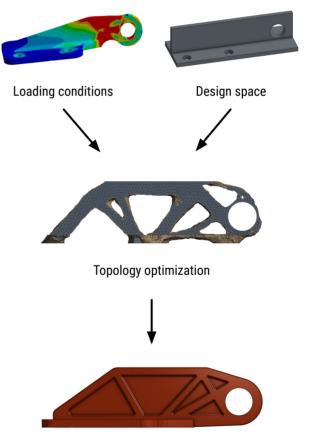
Red Series[™]

Feasibility Study Aerospace Hinge

Objective & Technical Feasibility

Objective

Aerospace-grade steel hinge


This Preliminary Feasibility Study shall give a first overview of the technical and economical feasibility of replacing the aerospace-grade steel hinge with its continuous carbon fiber reinforced PEKK counterpart, built with Red Series[™].

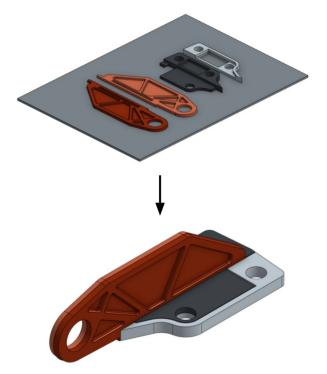
To achieve this objective, the following topics have been prepared:

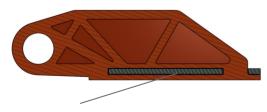
- Topology optimization & Redesign
- Multi-body strategy
- Reinforcement strategy
- Technical information & Potential weight reduction
- Cost analysis

Topology optimization & Redesign

Based on the given design space, the given boundary and loading conditions, a topology optimization with Ansys is performed to optimize the material layout and to determine the main load paths within the part.

Optimized redesign

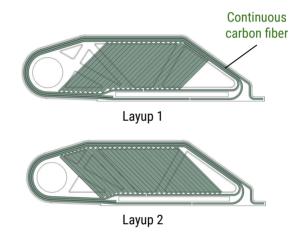

Then, the original aerospace-grade steel hinge is redesigned and a new CAD-model is created based on the results of the optimization process.


Technical Feasibility

Multi-body strategy

To optimize fiber placement, separate sub-parts can be printed individually, assembled and then consolidated together during the fusion process.

This ensures that all force application points and interfaces can be reinforced according to the boundary and loading conditions and sub-parts can be interlocked mechanically.

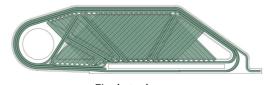


Interlocking of sub-parts to create a mechanical connection between base and vertical plates

Reinforcement strategy

Vertical plate 1&2

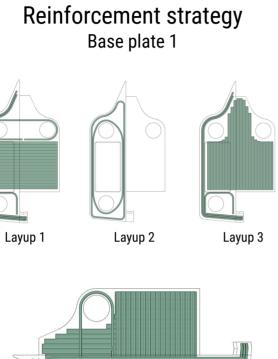
Multiple fiber layups can be designed and combined to a final stackup to optimize fiber placement, according to the loading conditions.



Layup 1 and Layup 2 form a $\pm 45^{\circ}$ shear webb to enhance torsional stiffness.

Layup 3

Layup 3 reinforces the ribs of the vertical plates, which follow along the main load paths.

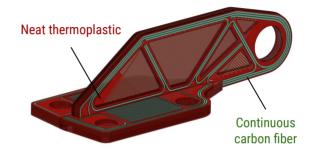


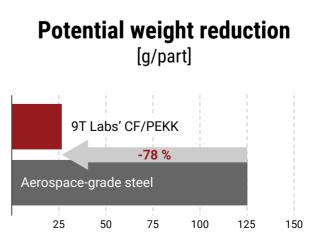
Final stackup

The *Final stackup* consists of an optimized combination and vertical distribution of *Layups 1-3*.

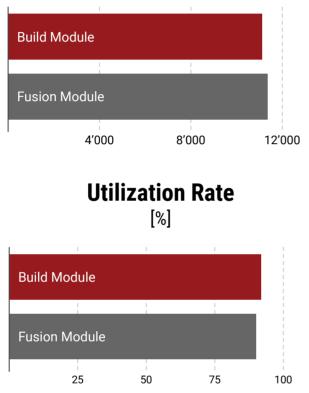
Technical Feasibility

Final stackup


Reinforcement strategy Base plate 2


Final stackup

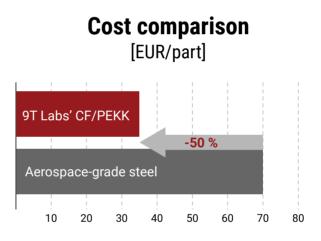
Reinforcement strategy Final assembly



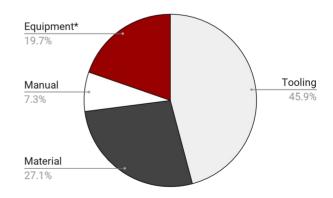
Technical information

Material	CF/PEKK- & PEKK-filament
Global V _f	39 %
<i>CF/PEKK (</i> 60% V _f)	65 %
neat PEKK	35 %
Part volume	18.3 cm ³
Part weight	27 g

Production capacity [Assemblies/year]


Assumption: Multiple applications are manufactured with Red Series machines, reaching a utilisation of > 90%.

Production costs


Annual leasing fee	28k EUR/Module
Overhead	30 %
Material costs	CF/PEKK: 400 EUR/kg PEKK: 250 EUR/kg
Labour costs	28 EUR/h
Production costs	19 EUR/part

Tooling costs

Acquisition costs	12'000 EUR
Production volume	150 parts/year
Planned production years	5 years
Tooling costs	16 EUR/part

Part production cost driver

* Equipment costs include software licences, service, maintenance and overhead costs.

